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INTERPLAY BETWEEN DISTRIBUTIONAL ESTIMATES AND
BOUNDEDNESS IN HARMONIC ANALYSIS

DMITRIY BILYK and LOUKAS GRAFAKOS

Abstract

In this paper, a proof is given that certain boundedness properties of operators yield distributional
estimates that have exponential decay at infinity. Such distributional estimates imply local
exponential integrability, and apply to many operators such as m-linear Calderón–Zygmund
operators and their maximal counterparts.

1. Introduction and the main result

It is a classical result that the Hilbert transform H and its maximal counterpart
H∗, defined for functions f on the line by the identities

H(f)(x) = lim
ε→0

1
π

∫
|t|�ε

f(x − t)
dt

t
, H∗(f)(x) = sup

ε>0

1
π

∣∣∣∣
∫
|t|�ε

f(x − t)
dt

t

∣∣∣∣,
satisfy, for all measurable sets F of finite measure, the distributional estimates

∣∣{|H(χF )| > λ}
∣∣ +

∣∣{|H∗(χF )| > λ}
∣∣ � C |F |

{
λ−1 when λ < 1,

e−cλ when λ � 1,
(1)

for a pair of constants C and c. For a proof of this result we refer to the book by
Garsia [1], in which explicit properties of the kernel 1/t of H are exploited.

In this paper, we show that distributional estimates of the type (1) hold for a
variety of linear (and sublinear) operators that may not have the rich structure
of the Hilbert transform. In fact, we prove that any linear operator of restricted
weak type (1, 1), whose adjoint is also of restricted weak type (1, 1), must satisfy
the distributional estimate (1), provided that it has a bounded kernel, or can be
written as a pointwise limit of linear operators with bounded kernels. Our results
also apply to m-linear operators that are of restricted weak type (1, . . . , 1, 1/m) and
whose adjoints have the same property. Extensions of this result to certain maximal
operators are also obtained.

We will be working with a multilinear operator T , defined on the m-fold product
of spaces of measurable functions on measure spaces (Xj , µj) that contain the simple
functions. We assume that T takes values in the set of measurable functions on
another measure space (X,µ). We denote by T ∗j , the adjoint with respect to the
jth variable, where j ∈ {1, 2, . . . ,m}. The operator T ∗j satisfies∫

g T (f1, . . . , fm) dµ =
∫

fj T ∗j(. . . , fj−1, g, fj+1, . . .) dµj
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for all functions f1, . . . , fm, g in the corresponding domains; an implicit assumption
is that all integrals converge absolutely. We also set T ∗0 = T .

We say that a multilinear operator T is of restricted weak type (p1, . . . , pm, q) if
there is a positive constant A such that for all measurable sets F1, . . . , Fm of finite
measure, we have∥∥T (χF1 , . . . , χFm

)
∥∥

Lq ,∞ � Aµ1(F1)1/p1 . . . µm(Fm)1/pm . (2)

Here, ‖g‖Lq ,∞ = supλ>0 λ|{|g| > λ}|1/q, and the smallest constant A such that (2)
is satisfied for all sets F1, . . . , Fm is called the restricted weak type (p1, . . . , pm, q)
constant of T .

We have the following result.

Theorem 1.1. Suppose that for some pk � 1 (k = 1, . . . , m), the operator T is
of restricted weak type (p1, . . . , pm, q), where q satisfies 1/q = 1/p1 + . . . + 1/pm.

Suppose also that for all j = 1, . . . ,m, the operator T ∗j is of restricted weak type
(p1,j , . . . , pm,j , qj), where 1/qj = 1/p1,j + . . . + 1/pm,j , pk,j � 1, and pj,j = 1.

Finally, suppose that T maps Lαp1 × . . . × Lαpm to Lαq for some α � q−1.
Then there are constants C and c (depending on the previous indices, T and m)

such that for all measurable sets F1, . . . , Fm of finite measure, we have

µ
({∣∣T (

χF1 , . . . , χFm

)∣∣ > λ
})

� C
(
µ1(F1)1/p1 . . . µm(Fm)1/pm

)q

{
λ−q when λ < 1,

e−cλ when λ � 1.
(3)

Remark 1.2. In many cases, the assumption that T maps Lαp1×. . .×Lαpm into
Lαq can be removed. For example, if T has a bounded kernel, this condition follows
from the restricted weak type conditions on T ∗j via the multilinear interpolation
theorem given in [5]. The same conclusion follows for operators that can be written
as a limit of a sequence of operators with bounded kernels.

Theorem 1.1 is motivated by the properties of the bilinear Hilbert transform that
satisfies the restricted weak type assumptions modulo some logarithmic factors. A
similar conclusion is valid for this operator as well (see the subsequent work of the
authors). Setting all exponents pk, pk,j equal to 1, we obtain the following important
corollary.

Corollary 1.3. Suppose that for j = 0, 1, . . . m, the operator T ∗j is of
restricted weak type (1, . . . , 1, 1/m). Suppose also that T maps Lmq × . . .×Lmq to
Lq for some q � 1. Then there are constants C and c, such that for all measurable
sets F1, . . . , Fm of finite measure, we have

µ
({∣∣T (

χF1 , . . . , χFm

)∣∣ > λ
})

� C
(
µ1(F1) . . . µm(Fm)

)1/m

{
λ−1/m when λ < 1,

e−cλ when λ � 1.
(4)

Remark 1.4. As in the proof of Theorem 1.1, the assumption that T maps
Lmq × . . . × Lmq to Lq can be dropped if T is assumed to have a bounded kernel,
or if it can be written as a limit of a sequence of operators with bounded kernels;
see [5].
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The distributional estimates (4) imply that T ∗j is bounded from Lpm× . . .×Lpm

to Lp for all indices 1/m < p < ∞. It follows by duality and standard multilinear
interpolation [2, 6], that T is bounded from Lp1 × . . . × Lpm to Lp whenever 1 <
p1, . . . , pm < ∞ and p−1 = p−1

1 + . . . + p−1
m . In this case, therefore, Corollary 1.3

recovers and strengthens the result given in [5].
In particular, in the linear case (that is, where m = 1), Corollary 1.3 implies that

estimate (4) holds for the Hilbert transform and other self-adjoint (or skew adjoint)
singular integrals that are of weak type (1, 1). In Section 3, we extend Corollary 1.3
for certain maximal singular integral operators.

2. The proof of Theorem 1.1

For simplicity, we denote the measure of any set S that appears in what follows
by |S|, on the understanding that this may be either µj(S) or µ(S), depending
on the context. Let T be as in the statement of Theorem 1.1. We first prove the
following lemma.

Lemma 2.1. There is a constant C1 such that for all measurable sets of finite
measure E,F1, . . . , Fm, there is a subset S of E such that |S| � 1

2 |E| and∣∣∣∣
∫
S

T (χF1 , . . . , χFm
) dµ

∣∣∣∣ � C1 |E|1−1/q|F1|1/p1 . . . |Fm|1/pm .

Proof. Define

Ω =
{

x : |T (χF1 , . . . , χFm
)(x)| > 21/qA

|F1|1/p1 . . . |Fm|1/pm

|E|1/q

}
,

where A is the restricted weak (p1, . . . , pm, q) constant of T . Then |Ω| < 1
2 |E|. Now

we set S = E \ Ω. We have |S| � 1
2 |E|, and also∣∣∣∣

∫
S

T (χF1 , . . . , χFm
) dµ

∣∣∣∣ � 21/qA
|F1|1/p1 . . . |Fm|1/pm

|E|1/q
|E|

= C1 |E|1−1/q|F1|1/p1 . . . |Fm|1/pm .

Lemma 2.2. There is a constant C2 such that for all measurable sets of finite
measure E,F1, . . . , Fm that satisfy |E|1/q � |F1|1/p1 . . . |Fm|1/pm , we have∣∣∣∣

∫
E

T (χF1 , . . . , χFm
) dµ

∣∣∣∣ � C2 |E|
(

1 + log
|F1|1/p1 . . . |Fm|1/pm

|E|1/q

)
.

Proof. Let us denote F
(0)
i = Fi for i = 1, . . . ,m. We now proceed inductively.

At the jth step, we choose the index kj such that |F (j)
kj

| = max(|F (j)
1 |, . . . , |F (j)

m |).
By Lemma 2.1 applied to T ∗kj for exponents p1,kj

, . . . , pm,kj
, qkj

with the roles of
E and Fkj

interchanged, we can choose S
(j)
kj

⊂ F
(j)
kj

such that |S(j)
kj

| � 1
2 |F

(j)
kj

| and

∣∣∣∣
∫
S

(j )
kj

T ∗kj (χF1 , . . . , χE , . . . χFm
) dµkj

∣∣∣∣ � C
|E|

∏
i�=kj

|F (j)
i |1/pi,k j

|F (j)
kj

|1/qkj
−1

� C |E|.
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We now define

F
(j+1)
i = F

(j)
i \ S

(j)
i for all i = 1, . . . ,m,

where we set S
(j)
i = ∅ for i �= kj . We proceed by induction, and we stop at the

first integer n such that |E|1/q � |F (n)
1 |1/p1 . . . |F (n)

m |1/pm . (Such an integer always
exists, since the quantity |F (j)

1 |1/p1 . . . |F (j)
m |1/pm gets smaller by at least a factor of

( 1
2 )1/max pi when j is replaced by j+1.) Obviously, the number of steps n is at most

C

(
1 + log

|F1|1/p1 . . . |Fm|1/pm

|E|1/q

)
.

We now have the sequence of estimates∣∣∣∣
∫
E

T
(
χF1 , . . . , χFm

)
dµ

∣∣∣∣
=

∣∣∣∣
∫
E

T
(
. . . , χ

S
(0)
k0

+ χ
F

(1)
k0

, . . .
)
dµ

∣∣∣∣
�

∣∣∣∣
∫
S

(0)
k0

T ∗k0(. . . , χE , . . .) dµk0

∣∣∣∣ +
∣∣∣∣
∫
E

T
(
χ

F
(1)
1

, . . . , χ
F

(1)
m

)
dµ

∣∣∣∣
� C |E| +

∣∣∣∣
∫
E

T
(
χ

F
(1)
1

, . . . , χ
F

(1)
m

)
dµ

∣∣∣∣.
Writing χ

F
(1)
k1

as χ
S

(1)
k1

+χ
F

(2)
k1

and applying this argument n− 1 more times, we see
that the previous expression is controlled by

nC |E| +
∣∣∣∣
∫
E

T
(
χ

F
(n )
1

, . . . , χ
F

(n )
m

)
dµ

∣∣∣∣
� C |E|

(
1 + log

|F1|1/p1 . . . |Fm|1/pm

|E|1/q

)

+ ‖T‖(αp1,...,αpm ,αq)

∣∣F (n)
1

∣∣1/αp1
. . .

∣∣F (n)
m

∣∣1/αpm |E|1/(αq)′

� C2 |E|
(

1 + log
|F1|1/p1 . . . |Fm|1/pm

|E|1/q

)
,

where in the second and third lines from the bottom we have used the Hölder
inequality and the fact that T is of strong type (αp1, . . . , αpm, αq).

Combining Lemmata 2.1 and 2.2, we obtain the following corollary.

Corollary 2.3. There is a constant C3 such that for all E,F1, . . . , Fm

measurable sets of finite measure, there is a subset S = SE,F1,...,Fm
of E with

|S| � 1
2 |E| such that∣∣∣∣

∫
S

T (χF1 , . . . , χFm
) dµ

∣∣∣∣
� C3 |E|min

(
1,

|F1|1/p1 . . . |Fm|1/pm

|E|1/q

)(
1 + log+ |F1|1/p1 . . . |Fm|1/pm

|E|1/q

)
.

We are now ready to prove the distributional estimate (3).
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For a given λ > 0, we set

E1
λ = {Re T (χF1 , . . . , χFm

) > λ};
E2

λ = {Re T (χF1 , . . . , χFm
) < −λ};

E3
λ = {Im T (χF1 , . . . , χFm

) > λ};
E4

λ = {Im T (χF1 , . . . , χFm
) < −λ}.

We shall prove the required estimate for a fixed Ej
λ. Suppose that |Ej

λ|1/q �
|F1|1/p1 . . . |Fm|1/pm . Then by Corollary 2.3 there is a subset Sj

λ of Ej
λ of at least

half its measure, so that

λ

2

∣∣Ej
λ

∣∣ � λ
∣∣Sj

λ

∣∣ �
∣∣∣∣
∫
Sj

λ

T
(
χF1 , . . . , χFm

)
dµ

∣∣∣∣ � C3
|F1|1/p1 . . . |Fm|1/pm∣∣Ej

λ

∣∣1/q−1
,

which implies that ∣∣Ej
λ

∣∣ � (2C3)q
(
|F1|1/p1 . . . |Fm|1/pm

)q
λ−q.

This in turn implies that if λ > 2C3, we must have |Ej
λ|1/q � |F1|1/p1 . . . |Fm|1/pm .

In this case, Corollary 2.3 gives

λ

2

∣∣Ej
λ

∣∣ � C3

∣∣Ej
λ

∣∣(1 + log
|F1|1/p1 . . . |Fm|1/pm∣∣Ej

λ

∣∣1/q

)
,

from which one easily deduces that |Ej
λ| � C e−cλ(|F1|1/p1 . . . |Fm|1/pm )q. Summing

over j = 1, 2, 3, 4, we deduce the required conclusion with a constant four times
as large.

3. Extensions to (multi)sublinear operators

Next, we prove the following extension of Corollary 1.3 for operators that may
be sublinear in each variable. Our setting here will be R

n (endowed with Lebesgue
measure), and M will denote the Hardy–Littlewood maximal operator.

Theorem 3.1. Suppose that a positive sublinear operator T∗ satisfies the
following Cotlar-type inequality:

T∗(f1, . . . , fm) � A

[
M(T (f1, . . . , fm)) +

m∏
j=1

M(fj)
]

for some operator T that satisfies estimate (3). Then there exist constants C∗, c∗ > 0
such that for λ > 1,∣∣{T∗

(
χF1 , . . . , χFm

)
> λ

}∣∣ � C∗ e−c∗λ
(
|F1|1/p1 . . . |Fm|1/pm

)q
.

Proof. Obviously, it is enough to show that M(T (χF1 , . . . , χFm
)) satisfies the

required distributional estimate, since M(χFj
) � 1. We denote

Ωλ =
{
M

(
T

(
χF1 , . . . , χFm

))
> λ

}
and f = T

(
χF1 , . . . , χFm

)
,

and we set
Ej = {x : 2j−1λ < |f(x)| � 2jλ} for j � 0.

By our assumption, we have

|Ej | � C e−c2j λ
(
|F1|1/p1 . . . |Fm|1/pm

)q
.
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We claim that there exists a constant B > 0, such that for all x ∈ Ωλ there exist
an integer k � 0 and a ball I containing x with the property that

|I ∩ Ek| � B2−2k|I|. (5)

Indeed, if this were not the case, then for any ball I containing x, we would have

1
|I|

∫
I

|f(z)|dz =
1
|I|

∫
I∩{|f |�λ/2}

|f(z)|dz +
∞∑

j=0

1
|I|

∫
I∩Ej

|f(z)|dz

� λ

2
+ B

∞∑
j=0

2−2j2j+1λ

= λ
(

1
2 + 4B

)
< 3

4λ

for B < 1
16 . However, this would imply that M(f)(x) < λ and that x /∈ Ωλ, a

contradiction.
For each x ∈ Ωλ, we denote by kx the smallest k for which (5) holds, and we set

Ωk
λ = {x ∈ Ωλ : kx = k}.

It is easy to see that

Ωk
λ ⊂ {M(χEk

) � B2−2k}.

Thus, using weak type (1,1) property of M , we obtain∣∣Ωk
λ

∣∣ � B′22k|Ek| � B′′22k−c′2k λ
(
|F1|1/p1 . . . |Fm|1/pm

)q
.

Now the required estimate for λ � 1 is obtained by summing the series

|Ωλ| =
∞∑

j=0

|Ωj
λ|.

4. Applications to m-linear Calderón–Zygmund operators

Bounded m-linear operators from Lp1(Rn)× . . .×Lpm (Rn) to Lp(Rn) (for some
exponents 1 < p1, . . . , pm < ∞ with p−1 = p−1

1 + . . . + p−1
m ) are called multilinear

Calderón–Zygmund if they have the form

T (f1, . . . , fm)(x) =
∫
(Rn )m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym, (6)

for some distributional kernel K(x, y1, . . . , ym) that coincides with a function
defined away from the diagonal x = y1 = y2 = . . . = ym that satisfies the size
estimate

|K(y0, y1, . . . , ym)| � A( ∑m
k,l=0 |yk − yl|

)mn , (7)

and, for some ε > 0, the regularity condition

|K(y0, . . . , yj , . . . , ym) − K(y0, . . . , y
′
j , . . . , ym)| �

A|yj − y′
j |ε( ∑m

k,l=0 |yk − yl|
)mn+ε , (8)

whenever 0 � j � m and |yj − y′
j | � 1

2 max0�k�m |yj − yk|.
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In view of a result given in [3], an m-linear Calderón–Zygmund operator T must
be bounded from the product L1 × . . . × L1 to L1/m,∞. As the properties of the
kernel K are symmetric in all variables, it follows that for any j between 1 and m
we also have T ∗j : L1 × . . .×L1 −→ L1/m,∞. Thus multilinear Calderón–Zygmund
operators satisfy the hypotheses of Corollary 1.3. It follows that they must also
satisfy the distributional estimates (4).

Next we show that the maximal multilinear Calderón–Zygmund operators
also satisfy the distributional estimates (4). We define the maximal truncated
operator as

T∗(f1, . . . , fm) = sup
δ>0

|Tδ(f1, . . . , fm)|,

where we set

Tδ(f1, . . . , fm)(x)

=
∫
|x−y1|2+...+|x−ym |2<δ2

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym.

It was proved in [4] that T∗ satisfies the pointwise estimate

T∗(f1, . . . , fm) � Cη

[
(M(|T (f1, . . . , fm)|η))1/η +

m∏
j=1

M(fj)
]

(9)

for some Cη > 0, whenever 0 < η < ∞.
Using Theorem 3.1, we therefore deduce the following conclusion.

Proposition 4.1. If T is a multilinear Calderón–Zygmund operator, then T∗
satisfies the distributional estimate (4).

Proof. The estimate for λ< 1 follows from the weak type (1, . . . , 1, 1/m)
property of T∗ (see [4]); the estimate for λ> 1 follows from Theorem 3.1 and
inequality (9) with η = 1.

The next corollary is an immediate consequence of the results just obtained.
Naturally, the same conclusion applies to any operator that satisfies the hypotheses
of Theorem 1.1 or Theorem 3.1 accordingly.

Corollary 4.2. There is a constant c1 > 0 so that for any multilinear Calderón–
Zygmund operator T , for any ball B, and for any tuple of measurable sets
F1, . . . , Fm of finite measure, we have∫

B

ec1 T (χF1 ,...,χFm ) dx +
∫
B

ec1 T∗(χF1 ,...,χFm ) dx < ∞.

5. Concluding remarks

One may wonder whether the conclusion of Theorem 1.1 would still be valid if
it were assumed that T and its adjoints are bounded on some product of Lebesgue
spaces Lp1 × . . .×Lpm with all pj > 1. We show that this is not the case, even when
m = 1.

Consider a linear operator T that maps Lq into Lq,∞ for some 1 < q < 2, and
suppose that T ∗ has the same property. Then both T and T ∗ are Lp bounded
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for all p ∈ (q, q′). Suppose, furthermore, that T does not map Lr into itself for
any r /∈ [q, q′]. Following the same procedure as that discussed in the proof of
Theorem 1.1, we deduce that there is a constant C such that for all sets F of finite
measure we have

|{|T (χF )| > λ}| � C |F |
{

λ−q when λ < 1,

λ−q′
(1 + log λ)q′

when λ � 1,
(10)

where q′ = q/(q − 1). It is clear that the term λ−q′
(1 + log λ)q′

cannot be replaced
by a term of the form e−cλ, as this would imply that T is bounded on Lp for all
p > q, which we assume is not the case.
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