Tutorial Info:

- **Website:** http://ms.mcmaster.ca/~dedieula.

- **Exam Review:** I’ll be doing an exam review Mon. Apr. 14th, 2:30-4:30pm in BSB147. (There are also 2 other reviews happening that day. See Avenue for more details.)

- **Math Help Centre:** Wednesdays 2:30-5:30pm.

- **Email:** dedieula@math.mcmaster.ca.
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a **basis** for V if:

- The vectors in S are linearly independent.
- S spans V.

Gram-Schmidt Process:

To convert a basis $\{u_1, \ldots, u_n\}$ to an orthogonal basis $\{v_1, \ldots, v_n\}$, perform the following computations:

1. $v_1 = u_1$
2. $v_2 = u_2 - \text{proj}_{v_1} u_2$
3. $v_3 = u_3 - \text{proj}_{v_1} u_3 - \text{proj}_{v_2} u_3$
4. $v_4 = u_4 - \text{proj}_{v_1} u_4 - \text{proj}_{v_2} u_4 - \text{proj}_{v_3} u_4$
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a basis for V if:
 1. The vectors in S are linearly independent.
Examples:

1. a) Suppose \(x_1 = (1, 1, 0) \) and \(x_2 = (2, 2, 3) \). Find an orthogonal basis for \(\text{span}\{x_1, x_2\} \).

Recall: A set \(S = \{v_1, \ldots, v_n\} \) of vectors, where \(v_1, \ldots, v_n \in V \) is called a basis for \(V \) if:
 1. The vectors in \(S \) are linearly independent.
 2. \(S \) spans \(V \).
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a basis for V if:
 1. The vectors in S are linearly independent.
 2. S spans V.

Gram-Schmidt Process: To convert a basis $\{u_1, \ldots, u_n\}$ to an orthogonal basis $\{v_1, \ldots, v_n\}$, perform the following computations:
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a basis for V if:
 1. The vectors in S are linearly independent.
 2. S spans V.

Gram-Schmidt Process: To convert a basis $\{u_1, \ldots, u_n\}$ to an orthogonal basis $\{v_1, \ldots, v_n\}$, perform the following computations:
 1. $v_1 = u_1$.

b) Find an orthonormal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set of vectors is called orthonormal if it is orthogonal and each vector has norm 1.
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a basis for V if:
1. The vectors in S are linearly independent.
2. S spans V.

Gram-Schmidt Process: To convert a basis $\{u_1, \ldots, u_n\}$ to an orthogonal basis $\{v_1, \ldots, v_n\}$, perform the following computations:

1. $v_1 = u_1$.
2. $v_2 = u_2 - \text{proj}_{v_1} u_2$.

b) Find an orthonormal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set of vectors is called orthonormal if it is orthogonal and each vector has norm 1.
Examples:

1. a) Suppose $x_1 = (1, 1, 0)$ and $x_2 = (2, 2, 3)$. Find an orthogonal basis for $\text{span}\{x_1, x_2\}$.

Recall: A set $S = \{v_1, \ldots, v_n\}$ of vectors, where $v_1, \ldots, v_n \in V$ is called a basis for V if:
 1. The vectors in S are linearly independent.
 2. S spans V.

Gram-Schmidt Process: To convert a basis $\{u_1, \ldots, u_n\}$ to an orthogonal basis $\{v_1, \ldots, v_n\}$, perform the following computations:

1. $v_1 = u_1$.
2. $v_2 = u_2 - \text{proj}_{v_1} u_2$.
3. $v_3 = u_3 - \text{proj}_{v_1} u_3 - \text{proj}_{v_2} u_3$.
Examples:

1. a) Suppose \(x_1 = (1, 1, 0) \) and \(x_2 = (2, 2, 3) \). Find an orthogonal basis for \(\text{span}\{x_1, x_2\} \).

Recall: A set \(S = \{v_1, \ldots, v_n\} \) of vectors, where \(v_1, \ldots, v_n \in V \) is called a basis for \(V \) if:
 1. The vectors in \(S \) are linearly independent.
 2. \(S \) spans \(V \).

Gram-Schmidt Process: To convert a basis \(\{u_1, \ldots, u_n\} \) to an orthogonal basis \(\{v_1, \ldots, v_n\} \), perform the following computations:

1. \(v_1 = u_1 \).
2. \(v_2 = u_2 - \text{proj}_{v_1} u_2 \).
3. \(v_3 = u_3 - \text{proj}_{v_1} u_3 - \text{proj}_{v_2} u_3 \).
4. \(v_4 = u_4 - \text{proj}_{v_1} u_4 - \text{proj}_{v_2} u_4 - \text{proj}_{v_3} u_4 \).
Examples:

1. a) Suppose \(x_1 = (1, 1, 0) \) and \(x_2 = (2, 2, 3) \). Find an orthogonal basis for \(\text{span}\{x_1, x_2\} \).

Recall: A set \(S = \{v_1, \ldots, v_n\} \) of vectors, where \(v_1, \ldots, v_n \in V \) is called a basis for \(V \) if:
 1. The vectors in \(S \) are linearly independent.
 2. \(S \) spans \(V \).

Gram-Schmidt Process: To convert a basis \(\{u_1, \ldots, u_n\} \) to an orthogonal basis \(\{v_1, \ldots, v_n\} \), perform the following computations:

 1. \(v_1 = u_1 \).
 2. \(v_2 = u_2 - \text{proj}_{v_1} u_2 \).
 3. \(v_3 = u_3 - \text{proj}_{v_1} u_3 - \text{proj}_{v_2} u_3 \).
 4. \(v_4 = u_4 - \text{proj}_{v_1} u_4 - \text{proj}_{v_2} u_4 - \text{proj}_{v_3} u_4 \).

b) Find an orthonormal basis for \(\text{span}\{x_1, x_2\} \).
Examples:

1. a) Suppose \(x_1 = (1, 1, 0) \) and \(x_2 = (2, 2, 3) \). Find an orthogonal basis for \(\text{span}\{x_1, x_2\} \).

Recall: A set \(S = \{v_1, \ldots, v_n\} \) of vectors, where \(v_1, \ldots, v_n \in V \) is called a **basis** for \(V \) if:
 1. The vectors in \(S \) are linearly independent.
 2. \(S \) spans \(V \).

Gram-Schmidt Process: To convert a basis \(\{u_1, \ldots, u_n\} \) to an orthogonal basis \(\{v_1, \ldots, v_n\} \), perform the following computations:

 1. \(v_1 = u_1 \).
 2. \(v_2 = u_2 - \text{proj}_{v_1} u_2 \).
 3. \(v_3 = u_3 - \text{proj}_{v_1} u_3 - \text{proj}_{v_2} u_3 \).
 4. \(v_4 = u_4 - \text{proj}_{v_1} u_4 - \text{proj}_{v_2} u_4 - \text{proj}_{v_3} u_4 \).

b) Find an orthonormal basis for \(\text{span}\{x_1, x_2\} \).

Recall: A set of vectors is called **orthonormal** if it is orthogonal and each vector has norm 1.
Examples:

2. Suppose \(x_1 = (1, 1, 1, 1), \ x_2 = (-1, 4, 4, 1), \ x_3 = (4, -2, 2, 0), \) and \(\{x_1, x_2, x_3\} \) forms a basis for a subspace of \(\mathbb{R}^4 \). Find an orthonormal basis for this subspace.
Examples:

3. We know

\[T := \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}. \]

forms a basis for \(\mathbb{R}^2 \).
Examples:

- 3. We know

\[T := \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} . \]

forms a basis for \(\mathbb{R}^2 \).

- a) Find the coordinate vector of \(\mathbf{v} = (3, 5) \) relative to the basis \(T \). i.e. Find \([\mathbf{v}]_T\).
Examples:

- **3.** We know
 \[T := \left\{ \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ \end{pmatrix} \right\}. \]
 forms a basis for \(\mathbb{R}^2 \).

- **a)** Find the coordinate vector of \(v = (3,5) \) relative to the basis \(T \). i.e. Find \([v]_T\).

- **Recall:** If \(S = \{v_1, \ldots, v_n\} \) is a basis for \(V \), and \(w = k_1 v_1 + k_2 v_2 + \ldots + k_n v_n \) for \(k_1, \ldots, k_n \in \mathbb{R} \), then \([w]_S = (k_1, \ldots, k_n)\) is called the coordinate vector of \(v \) relative to \(S \).
Examples:

- 3. We know

\[T := \left\{ \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ \end{pmatrix} \right\}. \]

forms a basis for \(\mathbb{R}^2 \).

- a) Find the coordinate vector of \(v = (3, 5) \) relative to the basis \(T \). i.e. Find \([v]_T\).

- Recall: If \(S = \{v_1, \ldots, v_n\} \) is a basis for \(V \), and \(w = k_1 v_1 + k_2 v_2 + \ldots + k_n v_n \) for \(k_1, \ldots, k_n \in \mathbb{R} \), then \([w]_S = (k_1, \ldots, k_n)\) is called the coordinate vector of \(v \) relative to \(S \).

- b) Find the vector \(w \in \mathbb{R}^2 \) whose coordinate vector relative to \(T \) is \([w]_T = (4, 2)\).
Examples:

4. Suppose x_1, x_2, and x_3 are linearly independent vectors in \mathbb{R}^3. Let $W = \text{span}\{x_1, x_2, x_3\}$.
Examples:

- 4. Suppose x_1, x_2, and x_3 are linearly independent vectors in \mathbb{R}^3. Let $W = \text{span}\{x_1, x_2, x_3\}$.

- a) What is $\text{dim}(W)$, (i.e. the dimension of W)?
Examples:

4. Suppose $x_1, x_2, \text{ and } x_3$ are linearly independent vectors in \mathbb{R}^3. Let $W = \text{span}\{x_1, x_2, x_3\}$.

a) What is $\dim(W)$, (i.e. the dimension of W)?
Examples:

- **4.** Suppose x_1, x_2, and x_3 are linearly independent vectors in \mathbb{R}^3. Let $W = \text{span}\{x_1, x_2, x_3\}$.

- **a)** What is $\dim(W)$, (i.e. the dimension of W)?

- **Recall:** All bases of a finite dimensional vector space V have the same number of vectors.
Examples:

- 4. Suppose x_1, x_2, and x_3 are linearly independent vectors in \mathbb{R}^3. Let $W = \text{span}\{x_1, x_2, x_3\}$.

- a) What is $\dim(W)$, (i.e. the dimension of W)?

- Recall: All bases of a finite dimensional vector space V have the same number of vectors.

- If a finite dimensional vector space V has a basis consisting of n vectors, then by definition, $\dim(V) = n$.
Examples:

- b) Let $x_4 \in W$. Is the set $Y = \{x_1, x_2, x_3, x_4\}$ linearly independent?
Examples:

- b) Let $x_4 \in W$. Is the set $Y = \{x_1, x_2, x_3, x_4\}$ linearly independent?

- Recall: Let $\{v_1, \ldots, v_n\}$ be a basis for V. Let S be a set of vectors from V. Then:
Examples:

- **b)** Let \(x_4 \in W \). Is the set \(Y = \{x_1, x_2, x_3, x_4\} \) linearly independent?

- **Recall:** Let \(\{v_1, \ldots, v_n\} \) be a basis for \(V \). Let \(S \) be a set of vectors from \(V \). Then:
 1. If \(S \) has \(> n \) vectors, then \(S \) is linearly dependent.
Examples:

- b) Let $x_4 \in W$. Is the set $Y = \{x_1, x_2, x_3, x_4\}$ linearly independent?

- Recall: Let $\{v_1, \ldots, v_n\}$ be a basis for V. Let S be a set of vectors from V. Then:
 1. If S has $> n$ vectors, then S is linearly dependent.
 2. If S has $< n$ vectors, then S does not span V.
Examples:

■ b) Let \(x_4 \in W \). Is the set \(Y = \{x_1, x_2, x_3, x_4\} \) linearly independent?

■ Recall: Let \(\{v_1, \ldots, v_n\} \) be a basis for \(V \). Let \(S \) be a set of vectors from \(V \). Then:
 1. If \(S \) has \(> n \) vectors, then \(S \) is linearly dependent.
 2. If \(S \) has \(< n \) vectors, then \(S \) does not span \(V \).

■ c) Let \(x_5, x_6 \in W \). Does \(\text{span}\{x_5, x_6\} = W \)?
Examples:

- d) Which familiar vector space is equal to W?
Examples:

- d) Which familiar vector space is equal to W?

- Recall: Let V be a vector space such that $\dim(V) = n$. Let $S = \{x_1, \ldots, x_n\}$ be a set of vectors in V. Then, S is a basis for $V \iff S$ is linearly independent OR S spans V.
Examples:

- d) Which familiar vector space is equal to W?

- **Recall:** Let V be a vector space such that $\dim(V) = n$. Let $S = \{x_1, \ldots, x_n\}$ be a set of vectors in V. Then, S is a basis for $V \iff S$ is linearly independent OR S spans V.

- The **standard basis** for \mathbb{R}^3 is $\{(1,0,0), (0,1,0), (0,0,1)\}$.
Examples:

- 5. Suppose you were given a homogeneous linear system, you solved it, and found solutions: $x = 2s + t - 3r$, $y = 2t$, $z = t$, $w = s$, $u = r$.
Examples:

- **5.** Suppose you were given a homogeneous linear system, you solved it, and found solutions: \(x = 2s + t - 3r \), \(y = 2t \), \(z = t \), \(w = s \), \(u = r \).

- **a)** Find a basis for this solution space.
Examples:

- 5. Suppose you were given a homogeneous linear system, you solved it, and found solutions: \(x = 2s + t - 3r, y = 2t, z = t, w = s, u = r. \)

- a) Find a basis for this solution space.

- b) What is the dimension of this solution space?
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.
Examples:

- Suppose \(A \) is a \(3 \times 4 \) matrix. Complete the following sentences.

 a) The rank of \(A \) is at most
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.
 - a) The rank of A is at most \ldots .
 - b) The nullity of A is at most \ldots .
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.

- a) The rank of A is at most
- b) The nullity of A is at most
- c) The rank of A^T is at most
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.
 - a) The rank of A is at most
 - b) The nullity of A is at most
 - c) The rank of A^T is at most
 - d) The nullity of A^T is at most
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.

- a) The rank of A is at most \ldots.
- b) The nullity of A is at most \ldots.
- c) The rank of A^T is at most \ldots.
- d) The nullity of A^T is at most \ldots.

- **Recall:** The **rowspace** of A is the subspace spanned by the rows of A.
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.

 - a) The rank of A is at most
 - b) The nullity of A is at most
 - c) The rank of A^T is at most
 - d) The nullity of A^T is at most

- **Recall:** The **rowspace** of A is the subspace spanned by the rows of A.
- The **columnspace** of A is the subspace spanned by the columns of A.
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.

 - a) The rank of A is at most
 - b) The nullity of A is at most
 - c) The rank of A^T is at most
 - d) The nullity of A^T is at most

- Recall: The **rowspace** of A is the subspace spanned by the rows of A.
- The **columnspace** of A is the subspace spanned by the columns of A.
- The **nullspace** of A is the subspace spanned by the solutions to the equation $Ax = 0$.

\[\text{rank}(A) = \dim \text{rowspace of } A = \dim \text{columnspace of } A. \]

\[\text{nullity}(A) = \dim \text{nullspace of } A. \]

Rank-Nullity Theorem: \[\text{rank}(A) + \text{nullity}(A) = n, \] where A is a $m \times n$ matrix.
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.

- a) The rank of A is at most
- b) The nullity of A is at most
- c) The rank of A^T is at most
- d) The nullity of A^T is at most

- Recall: The rowspace of A is the subspace spanned by the rows of A.
- The columnspace of A is the subspace spanned by the columns of A.
- The nullspace of A is the subspace spanned by the solutions to the equation $Ax = 0$.
- $\text{rank}(A) = \dim\{\text{columnspace of } A\} = \dim\{\text{rowspace of } A\}$.
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.
 - a) The rank of A is at most
 - b) The nullity of A is at most
 - c) The rank of A^T is at most
 - d) The nullity of A^T is at most

- Recall: The **rowspace** of A is the subspace spanned by the rows of A.
- The **columnspace** of A is the subspace spanned by the columns of A.
- The **nullspace** of A is the subspace spanned by the solutions to the equation $Ax = 0$.
- $\text{rank}(A) = \dim\{\text{columnspace of } A\} = \dim\{\text{rowspace of } A\}$.
- $\text{nullity}(A) = \dim\{\text{nullspace of } A\}$.
Examples:

- Suppose A is a 3×4 matrix. Complete the following sentences.
 - a) The rank of A is at most
 - b) The nullity of A is at most
 - c) The rank of A^T is at most
 - d) The nullity of A^T is at most

- Recall: The **rowspace** of A is the subspace spanned by the rows of A.
- The **columnspace** of A is the subspace spanned by the columns of A.
- The **nullspace** of A is the subspace spanned by the solutions to the equation $Ax = 0$.
- $\text{rank}(A) = \dim\{\text{columnspace of } A\} = \dim\{\text{rowspace of } A\}$.
- $\text{nullity}(A) = \dim\{\text{nullspace of } A\}$.
- **Rank-Nullity Theorem**: $\text{rank}(A) + \text{nullity}(A) = n$, where A is a $m \times n$ matrix.
Examples:

7. Suppose A is a 3×5 matrix.
Examples:

- 7. Suppose A is a 3×5 matrix.
- a) Are the rows of A linearly dependent?
Examples:

- 7. Suppose A is a 3×5 matrix.

 a) Are the rows of A linearly dependent?

 b) Are the columns of A linearly dependent?
Examples:

8. Suppose A is a 3×3 matrix whose nullspace is a line through the origin in \mathbb{R}^3. Can the row or column space of A be a line through the origin too?