Tutorial Info:

- **Website:** http://ms.mcmaster.ca/~dedieula.
- **Math Help Centre:** Wednesdays 2:30-5:30pm.
- **Email:** dedieula@math.mcmaster.ca.
Does the Commutative Law for Multiplication hold for Matrices?, i.e. is it always true that $AB = BA$?
Does the Commutative Law for Multiplication hold for Matrices?, i.e. is it always true that $AB = BA$?

- Well, we know that if A and B are not the same size, then BA may not even be defined.
Does the Commutative Law for Multiplication hold for Matrices?, i.e. is it always true that $AB = BA$?

- Well, we know that that if A and B are not the same size, then BA may not even be defined.

- e.g. If

 \[A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix} \]

 then

 \[AB = \begin{pmatrix} 10 & 2 & 0 & -4 \\ 7 & 2 & 1 & -3 \\ 9 & 6 & 7 & -5 \end{pmatrix}, \]

 but BA is not defined.
Does the Commutative Law for Multiplication hold for Matrices?, i.e. is it always true that $AB = BA$?

- Well, we know that if A and B are not the same size, then BA may not even be defined.

- e.g. If

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix}$$

then

$$AB = \begin{pmatrix} 10 & 2 & 0 & -4 \\ 7 & 2 & 1 & -3 \\ 9 & 6 & 7 & -5 \end{pmatrix},$$

but BA is not defined.

- So no, it is not true in general that $AB = BA$.

Does the Commutative Law for Multiplication hold for Matrices?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
Does the Commutative Law for Multiplication hold for Matrices?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
- Does $AB = BA$ for any possible A and B?
Does the Commutative Law for Multiplication hold for Matrices?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
- Does $AB = BA$ for any possible A and B?
- Can you think of a counterexample?
Does the Commutative Law for Multiplication hold for Matrices?

- Is it ever possible to find an A and B such that $AB = BA$?
Zero Divisors?

- For real numbers, we know that \(ab = 0 \Rightarrow a = 0 \) or \(b = 0 \).
Zero Divisors?

- For real numbers, we know that $ab = 0 \Rightarrow a = 0$ or $b = 0$.

- Is this true for matrices? (i.e. if we have two matrices A and B such that $AB = 0$, is it true that we must have $A = 0$ or $B = 0$?)
Cancellation Law?

- For real numbers, we know that $ab = ac \Rightarrow b = c$.
Cancellation Law?

- For real numbers, we know that $ab = ac \Rightarrow b = c$.
- Does this hold true in general for matrices? (i.e. $AB = AC \Rightarrow B = C$?)
Recap: In general, it is not true that:

- $AB = BA$ (i.e. multiplicative commutativity fails)
Recap: In general, it is not true that:

- $AB = BA$ (i.e. multiplicative commutativity fails)
- $AB = 0 \Rightarrow A = 0 \text{ or } B = 0$ (i.e. \exists non-zero zero divisors)
Recap: In general, it is not true that:

- $AB = BA$ (i.e. multiplicative commutativity fails)
- $AB = 0 \Rightarrow A = 0$ or $B = 0$ (i.e. \exists non-zero zero divisors)
- $AB = AC \Rightarrow B = C$ (i.e. cancellation law fails)
Multiplicative Identity

- In \mathbb{R} we have the number 1, and we know $a \times 1 = 1 \times a = a$.
Multiplicative Identity

- In \(\mathbb{R} \) we have the number 1, and we know \(a \times 1 = 1 \times a = a \).
- For matrices, this "1" is known as the identity matrix, e.g. if \(A \) is \(m \times n \), then \(A \times I_{n \times n} = A \).
Multiplicative Identity

- In \mathbb{R} we have the number 1, and we know $a \times 1 = 1 \times a = a$.
- For matrices, this "1" is known as the identity matrix, e.g. if A is $m \times n$, then $A \times I_{n \times n} = A$.
- e.g.
Multiplicative Inverse

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$.

- If A is a square ($n \times n$) matrix such that $\exists B$ such that $AB = I_{n \times n} = BA$, then A is said to be invertible (a.k.a nonsingular), and B is called the inverse of A, ($B = A^{-1}$).

- If A is a 2×2 matrix, then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
Multiplicative Inverse

- In \(\mathbb{R} \) we know that for every \(a \) such that \(a \neq 0 \) there exists \(a^{-1} \) such that \(aa^{-1} = a^{-1}a = 1 \). e.g. \(2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2 \).
Multiplicative Inverse

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. e.g $2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2$.

- If A is a square $(n \times n)$ matrix such that $\exists a B$ such that $AB = I_{n \times n} = BA$, then A is said to be **invertible**, (a.k.a **nonsingular**), and B is called the inverse of A, $(B = A^{-1})$.

Multiplicative Inverse

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. e.g $2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2$.

- If A is a square $(n \times n)$ matrix such that \exists a B such that $AB = I_{n×n} = BA$, then A is said to be invertible, (a.k.a nonsingular), and B is called the inverse of A, ($B = A^{-1}$).

- If A is a 2×2 matrix, then

$$A^{-1} = \frac{1}{ad - bc} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

b/c:
For 2x2 Matrices:

- \(\det(A) = ad - bc. \)
For 2x2 Matrices:

- $\det(A) = ad - bc$.
- A is nonsingular $\iff \det(A) \neq 0$.
For 2x2 Matrices:

- $\text{det}(A) = ad - bc$.
- A is nonsingular $\iff \text{det}(A) \neq 0$.
- So, $\text{det}(A) = 0 \iff A$ is singular (i.e. A is not invertible).
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]

a) Is \(A \) invertible?.
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]

a) Is \(A \) invertible?.

b) Find \(A^{-1} \).
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]

- a) Is \(A \) invertible?.
- b) Find \(A^{-1} \).
- c) Is \(B \) invertible?.
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]

a) Is \(A \) invertible?.

b) Find \(A^{-1} \).

c) Is \(B \) invertible?.

d) Find \(B^{-1} \).
Examples:

1. Let

\[A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}. \]

- a) Is \(A \) invertible?.
- b) Find \(A^{-1} \).
- c) Is \(B \) invertible?.
- d) Find \(B^{-1} \).
- e) Find \((AB)^{-1} \).
Examples:

2. Let

\[A = \begin{pmatrix} 4 & x \\ x & 1 \end{pmatrix}. \]

For what values of \(x \) is \(A \) singular?
Examples:

3. Solve for X: $A(X + B) = CA$ (where A is invertible).
Examples:

- 4. Solve for X: $(2E + F)^T = G^{-1}X^T + F^T$.
Examples:

5. Find the inverse of

\[A = \begin{pmatrix} 1 & 1 & 1 \\ 6 & 7 & 5 \\ 3 & 2 & 3 \end{pmatrix} \]

using row operations.
Examples:

6. a) Solve for W: $2EWF^2 = (E^TF)^2$.
Examples:

6. a) Solve for W: $2EWF^2 = (E^TF)^2$.

b) What sizes must F and W be in order for W to have a unique solution if E is $3 \times n$?