Tutorial Info:

- **Website:** http://ms.mcmaster.ca/~dedieula.
- **Math Help Centre:** Wednesdays 2:30-5:30pm.
- **Email:** dedieula@math.mcmaster.ca.
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?.
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).
Examples:

- 1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

- a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an *eigenvector* of \(A \) if

\[Ax = \lambda x \]

for some \(\lambda \in \mathbb{R} \) (i.e. \(Ax \) is a scalar multiple of \(x \)).

- The scalar \(\lambda \) is called an *eigenvalue* of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\(Ax = \lambda x \)
Examples:

1. Consider

\[
A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}.
\]

a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\(Ax = \lambda x \iff Ax - \lambda x = 0 \)
Examples:

1. Consider

\[
A = \begin{pmatrix}
8 & 9 \\
-6 & -7
\end{pmatrix}.
\]

a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\(Ax = \lambda x \iff Ax - \lambda x = 0 \iff (A - \lambda I)x = 0. \)
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\[Ax = \lambda x \iff Ax - \lambda x = 0 \iff (A - \lambda I)x = 0. \]

We know \(\det(A) = 0 \iff A \) not invertible
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\[Ax = \lambda x \iff Ax - \lambda x = 0 \iff (A - \lambda I)x = 0. \]

We know \(\det(A) = 0 \iff A \) not invertible \(\iff Ax = 0 \) has non-trivial solutions.
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}. \]

a) What are the eigenvalues of \(A \)?.

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an **eigenvector** of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an **eigenvalue** of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\[Ax = \lambda x \iff Ax - \lambda x = 0 \iff (A - \lambda I)x = 0. \]

We know \(\det(A) = 0 \iff A \) **not** invertible \(\iff Ax = 0 \) has non-trivial solutions.

So, since we’re looking for vectors \(x \) such that \((A - \lambda I)x = 0 \) and we know that \(x \neq 0 \) by definition, then by our equivalent statements about inverses that must mean that \(\det(A - \lambda I) = 0. \)
Examples:

1. Consider

\[A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix} \]

a) What are the eigenvalues of \(A \)?

Recall: If \(A \) is square, then \(x \in \mathbb{R}^n \) such that \(x \neq 0 \) is called an eigenvector of \(A \) if \(Ax = \lambda x \) for some \(\lambda \in \mathbb{R} \). (i.e. \(Ax \) is a scalar multiple of \(x \)).

The scalar \(\lambda \) is called an eigenvalue of \(A \), and \(x \) is \(\lambda \)'s corresponding eigenvector.

\[Ax = \lambda x \iff Ax - \lambda x = 0 \iff (A - \lambda I)x = 0. \]

We know \(\det(A) = 0 \iff \text{not invertible} \iff Ax = 0 \) has non-trivial solutions.

So, since we’re looking for vectors \(x \) such that \((A - \lambda I)x = 0 \) and we know that \(x \neq 0 \) by definition, then by our equivalent statements about inverses that must mean that \(\det(A - \lambda I) = 0 \).

So, \(\lambda \) is an eigenvalue of \(A \) \(\iff \) it satisfies the equation \(\det(A - \lambda I) = 0 \).
Examples:

- b) Find all eigenvectors of A.
Examples:

- 2.a) Find all eigenvalues of

\[
A = \begin{pmatrix}
3 & 6 & -6 \\
-1 & -4 & 5 \\
2 & 2 & -1
\end{pmatrix}.
\]
Examples:

■ 2.a) Find all eigenvalues of

\[A = \begin{pmatrix} 3 & 6 & -6 \\ -1 & -4 & 5 \\ 2 & 2 & -1 \end{pmatrix}. \]

■ b) Find all eigenvectors corresponding to \(\lambda = -3 \).
Examples:

2.a) Find all eigenvalues of

\[
A = \begin{pmatrix}
3 & 6 & -6 \\
-1 & -4 & 5 \\
2 & 2 & -1
\end{pmatrix}.
\]

b) Find all eigenvectors corresponding to \(\lambda = -3 \).

c) Is \(A \) invertible?
Examples:

- 3.a) Find the eigenvalues of

\[A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}. \]
Examples:

- 3.a) Find the eigenvalues of
 \[A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}. \]

- b) Find all eigenvectors corresponding to \(\lambda = 2 \).
4.) Consider

\[A = \begin{pmatrix} 5 & -3 \\ a & b \end{pmatrix} \]

and suppose

\[x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

is an eigenvector of \(A \). What must the eigenvalue \(\lambda \) corresponding to \(x \) be?
Examples:

5.) Find all eigenvalues and eigenvectors of A^{10}, if

$$A = \begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix}.$$