Tutorial Info:

- **Website:** http://ms.mcmaster.ca/~dedieula.
- **Math Help Centre:** Wednesdays 2:30-5:30pm.
- **Email:** dedieula@math.mcmaster.ca.
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

 a) Set up a transition matrix to describe this phenomenon.
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

 a) Set up a transition matrix to describe this phenomenon.

 Recall: Our transition matrix takes us from time \(k \) to time \(k+1 \):

 \[
 \begin{pmatrix}
 w_{k+1} \\
 c_{k+1}
 \end{pmatrix} =
 \begin{pmatrix}
 P_{11} & P_{12} \\
 P_{21} & P_{22}
 \end{pmatrix}
 \begin{pmatrix}
 w_k \\
 c_k
 \end{pmatrix}.
 \]

 b) Is \(T \) a regular stochastic matrix?

 Recall: A square matrix \(A \) is called a stochastic matrix if each of its columns is a probability vector (i.e. the entries of each column sum to 1).

 c) Does \(T \) have a steady-state vector? If so, what is it?

 Recall: If \(P \) is a regular transition matrix for a Markov chain, then \(\exists ! \) probability vector \(q \) such that \(Pq = q \) (i.e. \(q \) is an eigenvector corresponding to \(\lambda = 1 \) and \(q \)’s entries sum to 1). This vector is called the steady-state vector.
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

 a) Set up a transition matrix to describe this phenomenon.

 Recall: Our transition matrix takes us from time k to time $k+1$:

 $$
 \begin{pmatrix}
 w_{k+1} \\
 c_{k+1}
 \end{pmatrix} =
 \begin{pmatrix}
 P_{11} & P_{12} \\
 P_{21} & P_{22}
 \end{pmatrix}
 \begin{pmatrix}
 w_k \\
 c_k
 \end{pmatrix}.
 $$

 b) Is T a regular stochastic matrix?
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

 a) Set up a transition matrix to describe this phenomenon.

 b) Is T a regular stochastic matrix?

 Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

a) Set up a transition matrix to describe this phenomenon.

Recall: Our transition matrix takes us from time k to time $k + 1$:

$$
\begin{pmatrix}
 w_{k+1} \\
 c_{k+1}
\end{pmatrix}
=
\begin{pmatrix}
 P_{11} & P_{12} \\
 P_{21} & P_{22}
\end{pmatrix}
\begin{pmatrix}
 w_k \\
 c_k
\end{pmatrix}.
$$

b) Is T a regular stochastic matrix?

Recall: A square matrix A is called a stochastic matrix if each of its columns is a probability vector (i.e. the entries of each column sum to 1).

c) Does T have a steady-state vector? If so, what is it?
Examples:

1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300. Suppose we also know that 10% of the raccoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

a) Set up a transition matrix to describe this phenomenon.

Recall: Our transition matrix takes us from time k to time $k + 1$:

\[
\begin{pmatrix}
 w_{k+1} \\
 c_{k+1}
\end{pmatrix} =
\begin{pmatrix}
 P_{11} & P_{12} \\
 P_{21} & P_{22}
\end{pmatrix}
\begin{pmatrix}
 w_k \\
 c_k
\end{pmatrix}.
\]

b) Is T a regular stochastic matrix?

Recall: A square matrix A is called a stochastic matrix if each of its columns is a probability vector (i.e. the entries of each column sum to 1).

c) Does T have a steady-state vector? If so, what is it?

Recall: If P is a regular transition matrix for a Markov chain, then $\exists!$ probability vector q such that $Pq = q$ (i.e. q is an eigenvector corresponding to $\lambda = 1$ and q’s entries sum to 1). This vector is called the steady-state vector.
Recall: A stochastic matrix A is called **regular** if A, or some positive power of A, has all positive entries.

d) In the long term, how will the population of raccoons in the city and woods be distributed?

Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector x_0, $\lim_{k \to \infty} P^k x_0 = q$, where P is the transition matrix for this chain.

e) How many raccoons will be in the city after 20 years?

Recall: We know $x_n = P^n x_0$, where x_0 is the initial state vector, x_n is the state vector at time n, and P is the transition matrix.
- **Recall:** A stochastic matrix A is called **regular** if A, or some positive power of A, has all positive entries.

- **d)** In the long term, how will the population of raccoons in the city and woods be distributed?
- **Recall:** A stochastic matrix A is called **regular** if A, or some positive power of A, has all positive entries.

- **d)** In the long term, how will the population of raccoons in the city and woods be distributed?

- **Recall:** If q is a steady-state vector for a regular Markov chain, then for any initial probability vector x_0, $\lim_{k \to \infty} P^k x_0 = q$, where P is the transition matrix for this chain.
- **Recall:** A stochastic matrix A is called **regular** if A, or some positive power of A, has all positive entries.

- **d)** In the long term, how will the population of raccoons in the city and woods be distributed?

- **Recall:** If q is a steady-state vector for a regular Markov chain, then for any initial probability vector x_0, \(\lim_{k \to \infty} P^k x_0 = q \), where P is the transition matrix for this chain.

- **e)** How many raccoons will be in the city after 20 years?
Recall: A stochastic matrix A is called **regular** if A, or some positive power of A, has all positive entries.

d) In the long term, how will the population of raccoons in the city and woods be distributed?

Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector x_0, $\lim_{k \to \infty} P^k x_0 = q$, where P is the transition matrix for this chain.

e) How many raccoons will be in the city after 20 years?

Recall: We know $x_n = P^n x_0$, where x_0 is the initial state vector, x_n is the state vector at time n, and P is the transition matrix.
Examples:

2. Express $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ as a real number.
Examples:

- 3. Consider \(z = \frac{i}{-2-2i} \).
Examples:

3. Consider \(z = \frac{i}{2-2i} \).

a) Express \(z \) in rectangular form.
Examples:

■ 3. Consider $z = \frac{i}{-2-2i}$.

■ a) Express z in rectangular form.

■ b) Express z in polar form.
Examples:

- 3. Consider $z = \frac{i}{-2 - 2i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.
- c) What is $\text{Arg} z$?
Examples:

3. Consider $z = \frac{i}{-2-2i}$.

a) Express z in rectangular form.

b) Express z in polar form.

c) What is $\text{Arg} \ z$?

Recall: The argument of z is multivalued, i.e. $\text{arg} \ z = \theta + 2\pi k, k \in \mathbb{Z}$.

The principal argument, $\text{Arg} \ z$, is such that $-\pi < \text{Arg} \ z \leq \pi$.
Examples:

3. Consider \(z = \frac{i}{-2-2i} \).

a) Express \(z \) in rectangular form.

b) Express \(z \) in polar form.

c) What is \(\text{Arg} z \)?

Recall: The argument of \(z \) is multivalued, i.e. \(\arg z = \theta + 2\pi k, k \in \mathbb{Z} \).

The principal argument, \(\text{Arg} z \), is such that \(-\pi < \text{Arg} z \leq \pi \).

d) What is \(\bar{z} \)?
Examples:

■ 3. Consider \(z = \frac{i}{-2 - 2i} \).

■ a) Express \(z \) in rectangular form.

■ b) Express \(z \) in polar form.

■ c) What is \(\text{Arg} z \)?

■ **Recall:** The **argument** of \(z \) is multivalued, i.e. \(\text{arg} z = \theta + 2\pi k, k \in \mathbb{Z} \).

■ The **principal argument**, \(\text{Arg} z \), is such that \(-\pi < \text{Arg} z \leq \pi \).

■ d) What is \(\bar{z} \)?

■ **Recall:** If \(z = a + bi \), then the **complex conjugate** of \(z \) is: \(\bar{z} = a - bi \).
Examples:

4. Express $(\sqrt{3} - i)^6$ in polar form.
Examples:

- 5. Find the solutions to the equation $z^3 = -1$.
Examples:

- 5. Find the solutions to the equation $z^3 = -1$.

- **Recall:**

 $z^{\frac{1}{n}} = \sqrt[n]{r}[\cos\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)], \ k = 0, 1, \ldots, n - 1$.
Examples:

- 6. a) Find the square roots of $2i$.
Examples:

- 6. a) Find the square roots of $2i$.
- b) Express your two roots in rectangular coordinates.