Tutorial Info:

- **Website:** http://ms.mcmaster.ca/~dedieula.
- **Review Session:** I’ll be doing a review session Mon. March 24th, 6:30-8:30pm, HH302. (See Avenue to Learn for additional review sessions.)
- **Math Help Centre:** Wednesdays 2:30-5:30pm.
- **Email:** dedieula@math.mcmaster.ca.
Examples:

1. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication as follows: If $u = (x_1, y_1), v = (x_2, y_2)$, then

$$u + v = \begin{pmatrix} x_1 - 2x_2 + 1 \\ 2y_1 + 3y_2 - 4 \end{pmatrix},$$

$$\alpha u = \begin{pmatrix} \frac{1}{\alpha}x_1 \\ y_1 \alpha^2 \end{pmatrix}.$$
Examples:

1. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication as follows: If $u = (x_1, y_1), \ v = (x_2, y_2)$, then

$$u + v = \begin{pmatrix} x_1 - 2x_2 + 1 \\ 2y_1 + 3y_2 - 4 \end{pmatrix},$$

$$\alpha u = \begin{pmatrix} \frac{1}{\alpha}x_1 \\ y_1 \alpha^2 \end{pmatrix}.$$

Is V a vector space with these stated operations? Specify which axioms hold, and which fail.
Examples:

■ 1. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication as follows: If $u = (x_1, y_1), v = (x_2, y_2)$, then

$$u + v = \begin{pmatrix} x_1 - 2x_2 + 1 \\ 2y_1 + 3y_2 - 4 \end{pmatrix},$$

$$\alpha u = \begin{pmatrix} \frac{1}{\alpha} x_1 \\ y_1 \alpha^2 \end{pmatrix}.$$

■ Is V a vector space with these stated operations? Specify which axioms hold, and which fail.

■ Recall: A vector space is a set V together with a binary operation “$+$” and a rule for scalar multiplication satisfying 10 axioms.
Examples:

1. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication as follows: If $u = (x_1, y_1), v = (x_2, y_2)$, then

$$u + v = \left(\begin{array}{c} x_1 - 2x_2 + 1 \\ 2y_1 + 3y_2 - 4 \end{array} \right),$$

$$\alpha u = \left(\begin{array}{c} \frac{1}{\alpha} x_1 \\ y_1 \alpha^2 \end{array} \right).$$

Is V a vector space with these stated operations? Specify which axioms hold, and which fail.

Recall: A vector space is a set V together with a binary operation “+” and a rule for scalar multiplication satisfying 10 axioms. i.e. If the axioms hold for all vectors $v, u, w \in V$ and for all scalars $\alpha, \beta \in \mathbb{R}$, then V is a vector space.
Examples:

1. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication as follows: If $u = (x_1, y_1), \; v = (x_2, y_2)$, then

$$u + v = \begin{pmatrix} x_1 - 2x_2 + 1 \\ 2y_1 + 3y_2 - 4 \end{pmatrix},$$

$$\alpha u = \begin{pmatrix} \frac{1}{\alpha} x_1 \\ y_1 \alpha^2 \end{pmatrix}.$$

Is V a vector space with these stated operations? Specify which axioms hold, and which fail.

Recall: A vector space is a set V together with a binary operation “$+$” and a rule for scalar multiplication satisfying 10 axioms. I.e. If the axioms hold for all vectors $v, u, w \in V$ and for all scalars $\alpha, \beta \in \mathbb{R}$, then V is a vector space.

Note: Scalars do not have to be in \mathbb{R}, but for simplicity I’ll use \mathbb{R} here.
Vector Space Axioms:

1. “+” Closure: $v, w \in V \Rightarrow v + w \in V$.
Vector Space Axioms:

1. “+” Closure: \(v, w \in V \Rightarrow v + w \in V. \)
2. “+” Commutativity: \(v, w \in V \Rightarrow v + w = w + v. \)
Vector Space Axioms:

1. “+” Closure: $v, w \in V \Rightarrow v + w \in V$.
2. “+” Commutativity: $v, w \in V \Rightarrow v + w = w + v$.
3. “+” Associativity: $u, v, w \in V \Rightarrow (u + v) + w = u + (v + w)$.
Vector Space Axioms:

1. “+” Closure: \(v, w \in V \Rightarrow v + w \in V \).
2. “+” Commutativity: \(v, w \in V \Rightarrow v + w = w + v \).
3. “+” Associativity: \(u, v, w \in V \Rightarrow (u + v) + w = u + (v + w) \).
4. “+” Identity: \(\exists \) a vector \(\bar{0} \in V \), such that \(v + \bar{0} = v \), \(\forall v \in V \).
Vector Space Axioms:

1. “+” **Closure**: $v, w \in V \Rightarrow v + w \in V$.
2. “+” **Commutativity**: $v, w \in V \Rightarrow v + w = w + v$.
3. “+” **Associativity**: $u, v, w \in V \Rightarrow (u + v) + w = u + (v + w)$.
4. “+” **Identity**: \exists a vector $\vec{0} \in V$, such that $v + \vec{0} = v$, $\forall v \in V$.
5. “+” **Inverse**: For each $v \in V \exists (-v) \in V$ such that $v + (-v) = \vec{0}$.
Vector Space Axioms:

1. “+” Closure: \(v, w \in V \Rightarrow v + w \in V \).
2. “+” Commutativity: \(v, w \in V \Rightarrow v + w = w + v \).
3. “+” Associativity: \(u, v, w \in V \Rightarrow (u + v) + w = u + (v + w) \).
4. “+” Identity: \(\exists \) a vector \(\bar{0} \in V \), such that \(v + \bar{0} = v \), \(\forall v \in V \).
5. “+” Inverse: For each \(v \in V \) \(\exists (−v) \in V \) such that \(v + (−v) = \bar{0} \).
6. “\(\alpha \)” Closure: \(v \in V \Rightarrow \alpha v \in V \ \forall \alpha \in \mathbb{R} \).
Vector Space Axioms:

1. “+” Closure: $v, w \in V \Rightarrow v + w \in V$.
2. “+” Commutativity: $v, w \in V \Rightarrow v + w = w + v$.
3. “+” Associativity: $u, v, w \in V \Rightarrow (u + v) + w = u + (v + w)$.
4. “+” Identity: \exists a vector $\bar{0} \in V$, such that $v + \bar{0} = v, \forall v \in V$.
5. “+” Inverse: For each $v \in V \exists (-v) \in V$ such that $v + (-v) = \bar{0}$.
6. “α” Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.
7. “α” Distributivity: $\alpha(v + w) = \alpha v + \alpha w \forall, w \in V, \alpha \in \mathbb{R}$.
Vector Space Axioms:

1. "+" **Closure:** \(v, w \in V \Rightarrow v + w \in V \).
2. "+" **Commutativity:** \(v, w \in V \Rightarrow v + w = w + v \).
3. "+" **Associativity:** \(u, v, w \in V \Rightarrow (u + v) + w = u + (v + w) \).
4. "+" **Identity:** \(\exists \) a vector \(\bar{0} \in V \), such that \(v + \bar{0} = v \), \(\forall v \in V \).
5. "+" **Inverse:** For each \(v \in V \) \(\exists (-v) \in V \) such that \(v + (-v) = \bar{0} \).
6. "\(\alpha \)" **Closure:** \(v \in V \Rightarrow \alpha v \in V \ \forall \alpha \in \mathbb{R} \).
7. "\(\alpha \)" **Distributivity:** \(\alpha(v + w) = \alpha v + \alpha w \ \forall v, w \in V, \alpha \in \mathbb{R} \).
8. **Vector Distributivity:** \((\alpha + \beta)v = \alpha v + \beta v \ \forall v \in V, \alpha, \beta \in \mathbb{R} \).
Vector Space Axioms:

1. “+” **Closure:** \(v, w \in V \Rightarrow v + w \in V \).
2. “+” **Commutativity:** \(v, w \in V \Rightarrow v + w = w + v \).
3. “+” **Associativity:** \(u, v, w \in V \Rightarrow (u + v) + w = u + (v + w) \).
4. “+” **Identity:** \(\exists \) a vector \(\bar{0} \in V \), such that \(v + \bar{0} = v, \forall v \in V \).
5. “+” **Inverse:** For each \(v \in V \exists (-v) \in V \) such that \(v + (-v) = \bar{0} \).
6. “\(\alpha \)” **Closure:** \(v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R} \).
7. “\(\alpha \)” **Distributivity:** \(\alpha (v + w) = \alpha v + \alpha w \forall v, w \in V, \alpha \in \mathbb{R} \).
8. **Vector Distributivity:** \((\alpha + \beta)v = \alpha v + \beta v \forall v \in V, \alpha, \beta \in \mathbb{R} \).
9. “\(\alpha \)” **Associativity:** \((\alpha (\beta v)) = (\alpha \beta) v \forall v \in V, \alpha, \beta \in \mathbb{R} \).
Vector Space Axioms:

1. “+” Closure: \(v, w \in V \Rightarrow v + w \in V \).
2. “+” Commutativity: \(v, w \in V \Rightarrow v + w = w + v \).
3. “+” Associativity: \(u, v, w \in V \Rightarrow (u + v) + w = u + (v + w) \).
4. “+” Identity: \(\exists \) a vector \(\bar{0} \in V \), such that \(v + \bar{0} = v \), \(\forall v \in V \).
5. “+” Inverse: For each \(v \in V \) \(\exists (-v) \in V \) such that \(v + (-v) = \bar{0} \).
6. “\(\alpha \)” Closure: \(v \in V \Rightarrow \alpha v \in V \ \forall \alpha \in \mathbb{R} \).
7. “\(\alpha \)” Distributivity: \(\alpha (v + w) = \alpha v + \alpha w \ \forall v, w \in V, \ \alpha \in \mathbb{R} \).
8. Vector Distributivity: \((\alpha + \beta)v = \alpha v + \beta v \ \forall v \in V, \ \alpha, \beta \in \mathbb{R} \).
9. “\(\alpha \)” Associativity: \((\alpha \beta)v = (\alpha \beta)v \ \forall v \in V, \ \alpha, \beta \in \mathbb{R} \).
10. “\(\alpha \)” Identity: \(1 \times v = v \ \forall v \in V, \ 1 \in \mathbb{R} \).
Examples:

2. If $V = \mathbb{R}^2$ is a set with addition and scalar multiplication defined as $u + v = (u_1 + v_1 + 1, u_2 + v_2 + 1)$, $\alpha u = (\alpha u_1, \alpha u_2)$, where $u = (u_1, u_2)$, $v = (v_1, v_2)$, then what must $\tilde{0}$ be?
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$).
Examples:

- 3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

- **Recall:** A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and multiplication operations defined on V.
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

Recall: A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and multiplication operations defined on V.

Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \iff$ the following hold:
Examples:

- **3.** Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

- **Recall:** A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and multiplication operations defined on V.

- **Subspace Criterion:** A subset $W \subseteq V$ is a subspace of $V \iff$ the following hold:
 1. W is nonempty.
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$).

Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.

Subspace Criterion: A subset $W \subseteq V$ is a subspace of V if the following hold:
1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u + v \in W \forall$ scalars α).
Examples:

3. Determine which of the following sets are subspaces of \(P_2 \) (where \(P_2 \) is the vector space of polynomials of degree \(\leq 2 \). e.g. \(\{ ax^2 + bx + c \mid a, b, c \in \mathbb{R} \} \)).

Recall: A subset \(W \) of a vector space \(V \) is called a subspace of \(V \) if \(W \) is itself a vector space under the addition and multiplication operations defined on \(V \).

Subspace Criterion: A subset \(W \subseteq V \) is a subspace of \(V \) \(\iff \) the following hold:

1. \(W \) is nonempty.
2. \(W \) is closed under addition (i.e. \(u, v \in W \Rightarrow u + v \in W \forall \) scalars \(\alpha \)).
3. \(W \) is closed under scalar multiplication (i.e. \(u \in W \Rightarrow \alpha u \in W \forall \) scalars \(\alpha \)).
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$).

Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.

Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \iff$ the following hold:
1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \implies u + v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \implies \alpha u \in W \forall$ scalars α).

a) $W = \{r(1 + x^2) \mid r \in \mathbb{R}\}$.
Examples:

- **3.** Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

- **Recall:** A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and multiplication operations defined on V.

- **Subspace Criterion:** A subset $W \subseteq V$ is a subspace of V \iff the following hold:
 1. W is nonempty.
 2. W is closed under addition (i.e. $u, v \in W \Rightarrow u + v \in W \forall$ scalars α).
 3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

- **a)** $W = \{r(1 + x^2) | r \in \mathbb{R}\}$.

- **b)** $Y = \{\text{quadratic polynomials with only real roots}\}$.
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.

Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \iff$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u + v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

a) $W = \{r(1 + x^2) | r \in \mathbb{R}\}$.

b) $Y = \{\text{quadratic polynomials with only real roots}\}$.

c) $Z = \{a + bx | a, b \in \mathbb{R}, a^2 = b^2\}$.
Examples:

3. Determine which of the following sets are subspaces of P_2 (where P_2 is the vector space of polynomials of degree ≤ 2. e.g. $\{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$).

Recall: A subset W of a vector space V is called a \textbf{subspace} of V if W is itself a vector space under the addition and multiplication operations defined on V.

Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \iff$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u + v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

a) $W = \{r(1 + x^2) | r \in \mathbb{R}\}$.

b) $Y = \{\text{quadratic polynomials with only real roots}\}$.

c) $Z = \{a + bx | a, b \in \mathbb{R}, a^2 = b^2\}$.

d) $J = \{p + qx + rx^2 | p, q, r \in \mathbb{R}, r \geq 0\}$.
Examples:

- 4. Is the set $W_1 = \{(v_1, v_2, 0) | v_1, v_2 \in \mathbb{R}\}$ a subspace of \mathbb{R}^3?
Examples:

5. Consider the following sets of vectors:

\[S_1 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \right\}, S_2 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right\}, \]

\[S_3 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}. \]
Examples:

- 5. Consider the following sets of vectors:

\[
\begin{align*}
S_1 &: = \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \right\}, \\
S_2 &: = \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -3 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right\}, \\
S_3 &: = \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}.
\end{align*}
\]

- a) Which sets span \(\mathbb{R}^3 \)?
Examples:

5. Consider the following sets of vectors:

\[S_1 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \right\}, \quad S_2 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right\}, \]

\[S_3 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}. \]

a) Which sets span \(\mathbb{R}^3 \)?

Recall: The span of a set \(S = \{w_1, \ldots, w_r\} \), is the subspace formed by taking all possible linear combinations of the vectors in \(S \). i.e. \(\text{span}(S) = \{\alpha_1 w_1 + \ldots \alpha_r w_r | \alpha_1, \ldots, \alpha_r \in \mathbb{R}\} \).
Examples:

1. Consider the following sets of vectors:

\[S_1 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \right\}, \quad S_2 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ -3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}, \quad S_3 := \left\{ \begin{pmatrix} 9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}. \]

2. Which sets span \(\mathbb{R}^3 \)?

Recall: The span of a set \(S = \{w_1, \ldots, w_r\} \), is the subspace formed by taking all possible linear combinations of the vectors in \(S \). i.e.

\[\text{span}(S) = \{ \alpha_1 w_1 + \ldots \alpha_r w_r | \alpha_1, \ldots, \alpha_r \in \mathbb{R} \}. \]

Recall: If \(A \) is square, then \(Ax = b \) is consistent for every \(n \times 1 \) matrix \(b \) \(\iff \det(A) \neq 0 \).
Examples:

- b) Is the vector

\[
\begin{pmatrix}
3 \\
-1 \\
2
\end{pmatrix}
\]
in the span of \(S_1 \)? \(S_2 \)? \(S_3 \)?
Examples:

- b) Is the vector
 \[
 \begin{pmatrix}
 3 \\
 -1 \\
 2 \\
 \end{pmatrix}
 \]
 in the span of \(S_1 \), \(S_2 \), \(S_3 \)?

- c) Which of these vectors are linearly independent?
Examples:

- b) Is the vector
 \[
 \begin{pmatrix}
 3 \\
 -1 \\
 2
 \end{pmatrix}
 \]
 in the span of \(S_1 \)? \(S_2 \)? \(S_3 \)?

- c) Which of these vectors are linearly independent?

Recall: If a set of vectors \(S = \{v_1, \ldots, v_r\} \) is such that the equation
\[
\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_r v_r = \vec{0}
\]
has only the trivial solution (i.e. \(\alpha_1 = \ldots = \alpha_r = 0 \)),
then these vectors are said to be **linearly independent**. If there exist nontrivial solutions, then the vectors are said to be **linearly dependent**.