2.3: Linear Eq. is:

25, 27, 33, 46, 48

25. \(y' = x + 5y, \ y(0) = 3 \).

Recall: A first-order linear DE has the form

\[a_1(x) \frac{dy}{dx} + a_0(x) y = g(x). \]

Its standard form is

\[\frac{dy}{dx} + p(x) y = F(x). \]

To solve, we want to integrate both sides of

\[\frac{dy}{dx} = e^{\int p(x) \, dx} \int e^{\int p(x) \, dx} \, F(x) \, dx \]

Here, putting our DE in standard form:

\[\frac{dy}{dx} + (5)y = x \]

\[e^{-5x} y = \int x \, e^{-5x} \, dx \]

\[e^{-5x} y = \frac{-5x + 5}{5} \]

\[y = -\frac{1}{5} x - \frac{1}{25} + c e^{5x} \]

\(y(0) = 3 \implies 3 = -\frac{1}{5} + c \implies c = \frac{16}{25} \).

\[y = -\frac{1}{5} x - \frac{1}{25} + \frac{16}{25} e^{5x} \]
y is defined on (-∞, ∞).

\[y' = -\frac{1}{5} + \frac{7}{5} e^{5x} \text{ cont. on } (-∞, ∞). \]

\[\therefore I = (-∞, ∞). \]

27. \[xy' + y = e^x; \ y(1) = a. \]

\[\frac{dy}{dx} = \frac{e^x}{x} \]

\[\int y \, dx = \int \frac{e^x}{x} \, dx = \ln |x| + C \]

\[y(1) = a \]

\[e^a \cdot y = \int e^x \left(\frac{e^x}{x} \right) \, dx \]

\[\Rightarrow a = e + C \]

\[\Rightarrow C = a - e \]

\[xy = \int e^x \, dx \]

\[x \cdot y = e^x + C \]

\[y = xe^x + \frac{a - e}{x} \]

To find the largest interval where the solution is defined, we need the largest I x s.t. y is defined on I and its derivative is continuous.

y defined everywhere except at y = 0.

\[y' = \ln(x) e^x + \frac{x e^x + (a - e) \ln(x)}{x} \text{ defined and cont. for } x > 0. \]

\[\therefore I = (0, ∞). \]
33. \((x+1) \frac{dy}{dx} + y = \ln x \), \(y(1) = 10\).

\[\frac{dy}{dx} + \frac{y}{x+1} = \frac{\ln x}{x+1} \]

\[\int \frac{dy}{dx} \, dx = \int \frac{\ln x}{x+1} \, dx \]

\[y = \int e^x \, dx \]

\[y = \frac{\ln x - x + c}{x+1} \]

\[(x+1)y = \ln x - x + c \]

\[y = \frac{\ln x - x}{x+1} + \frac{c}{x+1} \]

\[\frac{dy}{dx} = \frac{\ln x (x+1)^{-1} + 2x (x+1)^{-1} - x (x+1)^{-1}}{(x+1)^2} \]

\[= \frac{(x+1)^{-1} + x \ln x [-(x+1)^{-2}] + 2x (1)}{x+1} \]

\[\text{Defined for } x > 0. \]

\[\therefore \mathcal{I} = (0, 0). \]

Note: The solution is not really complete. You can just see that if you have \(\ln x \) and \(x+1 \)'s in the denominator.
46. Reread Example 6 and then find the general solution of the DE on the interval \((-3, 3)\).

\[(x^2 - 9) \frac{dy}{dx} + xy = 0. \]

Recall:
- Define \(u = x^2 - 9 \) and \(du = 2x\,dx \)
- \(\int 1\,dx = \int \frac{x}{x^2 - 9}\,dx = \frac{1}{2} \ln |x^2 - 9| + C \)

on the interval \((-3, 3)\), \(x^2 - 9 < 0 \) \(\Rightarrow \frac{1}{2} \ln |x^2 - 9| = \frac{1}{2} \ln (x^2 - 9) \)

\[y = \int e^{\frac{x}{x^2 - 9}} (0) \]

\[\Rightarrow \sqrt{9 - x^2} y = 0 + C \]

\[\Rightarrow y = \frac{C}{\sqrt{9 - x^2}}. \]

48. Reread Example 6 and then discuss why it's technically incorrect to say that \(y = 5 \cdot e^{-x} \), \(0 \leq x \leq 1 \) is a "solution" of the IVP on the interval \([0, \infty)\).

In order for this to be a "solution," we need \(y \) to be \(C' \) on \([0, \infty)\).

But notice that \(y \) is not differentiable at \(x = 1 \):

\[\lim_{x \to 1^-} \frac{y(x) - y(1)}{x - 1} = -e^{-1}, \quad \lim_{x \to 1^+} \frac{y(x) - y(1)}{x - 1} = (e-1)(-e^{-1}) \]

\(\therefore \) at \(C' \) is not valid at \(x = 1 \), not same.