Math 2203: Week #9 Practice Problems

3.5: # 1, 3, 7, 9, 13, 17, 18.

1. Show that the eqn \(x + y - z + \cos(xyz) = 0 \) can be solved for \(z = g(x, y) \) near the origin. Find \(\frac{\partial g}{\partial x} \) and \(\frac{\partial g}{\partial y} \) at \((0,0)\).

Recall: Theorem 11: Special Implicit Function Theorem:

Suppose \(F: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \) has continuous partial derivatives.

Assume \((x_0, z_0)\) satisfies \(F(x_0, z_0) = 0 \) and \(\frac{\partial F}{\partial z}(x_0, z_0) \neq 0 \).

Then \(\exists \) a ball \(U \) containing \(x_0 \) and a nbhd \(V \) of \(z_0 \) s.t. \(\exists \) a function \(z = g(x) \) defined for \(x \in U \) and \(z \in V \) s.t. \(F(x, g(x)) = 0 \). If \(x \in U \) and \(z \in V \) satisfy \(F(x, z) = 0 \), then \(z = g(x) \) is \(C^1 \) with derivative given by:

\[
Dg(x) = \left. \frac{\partial F}{\partial z}(x, z) \right|_{z=g(x)}
\]

Here we have \(F: \mathbb{R}^3 \rightarrow \mathbb{R} \)

\((x, y, z) \mapsto x + y - z + \cos(xyz) \).

\((x_0, z_0) = (0,0, z_0)\).

\(F(x, z) = \begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \end{bmatrix} = \begin{bmatrix} 1 - \sin(xyz)yz & 1 - \sin(xyz)x \end{bmatrix} \)

So, we can see \(F \) has continuous partials. Also,

\(F(x, y, z) = 0 \) \(\forall (x, y, z) \in \mathbb{R}^3 \). So, in particular,

\(F(x_0, z_0) = F(0,0, z_0) = 0 \).

\(\frac{\partial F}{\partial z}(x_0, z_0) = \frac{\partial F}{\partial z}(0,0, z_0) = -1 - \sin(0) \cdot 0 = -1 \neq 0 \).

\(\therefore \) By Theorem 11 \(\exists \) a ball \(U \subseteq \mathbb{R}^3 \) containing \((0,0, z_0)\)
a nbhd $V \subseteq \mathbb{R}^n$ containing z_0 s.t. F's function

$z = g(x)$ for $x \in U \ni z \in V$ s.t. $F(x, g(x)) = 0$.

\therefore The eqn $x+y - z + \cos(xyz) = 0$ can be solved for $z = g(x,y)$ near $(0,0)$.

Also, by Theorem 11 we have:

$$Dg(x) = \left[\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \right] = -\frac{1}{\frac{\partial F(x,z)}{\partial z}} \begin{bmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial F}{\partial y} \end{bmatrix}, \quad z = g(x)$$

$\Rightarrow Dg(0) = \left[\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \right]_{(0,0)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

\[\text{Check: } \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and } \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]
7. Show that \(x^3 y^2 - z^3 y x = 0 \) is solvable for \(z \) as a function of \((x, y)\) near \((1, 1, 1)\), but not near the origin. Compute \(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \).

\[
F(x, y, z) = x^3 y^2 - z^3 y x.
\]

\[
DF = \begin{bmatrix}
3x^2 y^2 - z^3 y & -z^3 x
\end{bmatrix}
\]

So, \(F \) has continuous partials. Here \(x_0 = (1, 1) \) and \(z_0 = 1 \).

\[
\frac{\partial F}{\partial z}(1, 1, 1) = 2 - 3 = -1 \neq 0.
\]

So, we can write \(z = g(x, y) \) for some function \(g \) near \((1, 1, 1)\). However, \(\frac{\partial F}{\partial z}(0, 0, 0) = 0 \) so we can't use Theorem 11 to write \(z \) as a function of \((x, y)\) near \((0, 0, 0)\). In particular, in a nbhd of \((0, 0)\) we have \(x \neq 0 \) and \(y \neq 0 \). Suppose \(F(x, y, g(x, y)) \) where \(y = x \) we have

\[
\frac{\partial z}{\partial x} = 1 \quad \text{and} \quad F(x, y, g(x, y)) = 0.
\]

\[
z^2 \left[x^3 - z y x \right] = 0 \Rightarrow z = 0 \quad \text{or} \quad x^3 - z y x = 0.
\]

In the nbhd where \(y = x \) we have that this eqn would be satisfied for \(z = 0 \) or \(z = x \). So, since
Here is no unique value of z. You can be no function in this nbhd. s.t. $g(x, y) = z$.

$\forall x \in g(x, x) = 0$ & $g(x, x) = x$ works.

$Dg(1, 1) = \left[\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right] = \left[\frac{-1}{\frac{\partial F}{\partial x}(1, 1, 1)}, \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}(1, 1, 1)} \right] = \frac{1}{-1} \left[2, 1 \right] = \left[a, b \right]$.
17. Consider the equations:
\[x^2 - y^2 - u^3 + v^2 + 4 = 0 \]
\[2xy + y^2 - 2u^2 + 3v^4 + 8 = 0. \]

(a) Show that these equations determine functions \(u(x, y, v) \) and \(v(x, y) \) near the point \((x, y, u, v) = (2, 1, 2, 1) \).

\[
\Delta = \begin{vmatrix}
\frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\
\frac{\partial F}{\partial u} & \frac{\partial F}{\partial v}
\end{vmatrix}
= \begin{vmatrix}
-3u^2 & 2v \\
-4u & 12v^3
\end{vmatrix}
= (2, 12, 1)
\]

\[
= \begin{vmatrix}
-12 & 2 \\
-8 & 12
\end{vmatrix}
= -144 + 16 \neq 0.
\]

So, by Theorem 12, these equations determine functions \(u(x, y) \) and \(v(x, y) \) near \((x, y, u, v) = (2, 1, 2, 1) \).

(b) Compute \(\frac{\partial u}{\partial x} \) at \((x, y) = (2, 1) \).

Using implicit differentiation, we have:
\[2x - 3u^2 u' + 2uv' = 0 \quad \text{and} \quad 2y - 4uu' + 12v^3 v' = 0. \]

At \((2, 1) \), we have:
\[u' = 0 \quad \text{and} \quad v' = 0. \]
\[
\begin{align*}
4 - 12u' + 2v' &= 0 \\
-24 + 72u' - 12v' &= 0 \\
-2 - 8u' + 12v' &= 0 \\
-26 + 64u' &= 0
\end{align*}
\]

\[\frac{v'}{u'} = \frac{26}{64} = \frac{13}{32}.\]

10. It is possible to solve the system of equations.