1. Suppose that the population \(p \) (in thousands) of squirrels in Hamilton can be modelled by the DE \(\frac{dp}{dt} = p(2-p) \).

@ If the initial population of squirrels is 3000, what can you say about the long-term behaviour of the squirrel population?

\[p(2-p) > 0 \, \Rightarrow \, p = 0 \text{ or } p = 2. \]

\[p' \]

\[p(0) \]

\[p(2) \]

\[p(1) \]

\[p(3) \]

Squirrel population will tend to 2000 in the long-term.

@ Can a population of 1000 ever decline to 500? Explain.

No, b/c solution curves strictly increasing b/w 0 \& 2, so if we begin w/ 1000 it'll never decrease to 500.

@ Can a population of 1000 ever increase to 3000? Explain.

No, b/c a solution curve starting at \(p = 1 \) can't cross the constant solution \(p = 2 \), so it will tend to 2000, but can never reach 3000.
How many squirrels will there be after one year if the initial population of squirrels is 50?

\[p' = p(2-p) \]

\[\int \frac{1}{p(2-p)} \, dp = \int -\frac{1}{a} \, dt \]

\[\frac{1}{p} - \frac{1}{2} \ln(2-p) = -\frac{t}{a} + c \]

\[\frac{1}{2} \ln(2-p) = \frac{1}{2} \ln a - \frac{t}{a} + c \]

\[\ln \left| \frac{p}{2-p} \right| = -\frac{t}{a} + c \]

\[p = \frac{ce^{at}}{1 + ce^{at}} \]

Therefore, 50 squirrels = \(\frac{1}{20}\) thousand squirrels.

So, \(p(0) = \frac{1}{20} \).

\[\frac{1}{a} = \frac{2c}{1+c} \Rightarrow \frac{1}{20} = \frac{2c}{1+c} \Rightarrow \frac{1}{a} = \frac{34}{20} \Rightarrow c = \frac{1}{34}. \]

So \(p = \frac{2e^{at}}{34(1 + \frac{1}{34} e^{at})} = \frac{2e^{at}}{34 + e^{at}} \).
\[P(1) = \frac{2e^{2}}{39 + e^{2}} \]

So, after one year, there will be
\[\frac{2e^{2}}{39 + e^{2}} \approx 0.3196 \text{ thousand squirrels} \]
\[\approx 319 \text{ squirrels} \]

\[98 + (9-6)A = 1 \]
\[A = \frac{1}{9-6} = \frac{1}{3} \]

\[0 = 8 + A - 6 \]
\[A = 1 \]
\[A + 2c = 1 \]
\[c = \frac{1}{2} \]
\[c + \frac{1}{2} = 1 - \frac{1}{9-6} = \frac{1}{3} \]
\[c = \frac{1}{3} \]

\[6 = 9c + f \]
\[f = \frac{6}{11} \]

\[\frac{1}{f} = \frac{11}{6} \]

\[b = \frac{1}{f} = \frac{11}{6} \]

\[x = 30 \]

\[y = 30 \]

\[x + y = 60 \]
2. Consider the IVP \(y' = 2x - 3y + 1 \), \(y(1) = 5 \). Find an approximation of \(y(1.1) \) using Euler's method with a step size of \(h = 0.1 \).

\[
y_{n+1} = y_n + \frac{h}{10} F(x_n, y_n), \quad x_n = x_0 + nh.
\]

Here \(F(x, y) = 2x - 3y + 1 \). \(x_0 = 1 \), \(y_0 = 5 \).

\(n = 1 \):

\[
y_1 = y_0 + \frac{h}{10} F(x_0, y_0) = 5 + \frac{1}{10} F(1, 5)
\]

\[
= 5 + \frac{1}{10} (2 - 15 + 1) = 5 + \frac{1}{10} (-12) = \frac{50}{10} - \frac{12}{10}
\]

\[
= \frac{38}{10} = \frac{19}{5}. \quad \text{So, } x_1 = x_0 + h = 1 + \frac{1}{10} = \frac{11}{10}.
\]

\[
(x_1, y_1) = \left(\frac{11}{10}, \frac{19}{5} \right).
\]

\(n = 2 \):

\[
x_2 = x_0 + 2 \left(\frac{1}{10} \right) = \frac{10}{10} + \frac{2}{10} = \frac{12}{10} = 1.2.
\]

\[
y_2 = y_1 + \frac{h}{10} F(x_1, y_1) = \frac{19}{5} + \frac{1}{10} \left(\frac{11}{5} - 5 \frac{3}{5} + 1 \right)
\]

\[
= \frac{19}{5} + \frac{1}{10} \left(\frac{11}{5} - \frac{15}{5} \right) = \frac{19}{5} + \frac{1}{10} (-\frac{41}{5})
\]

\[
= \frac{190}{50} - \frac{41}{50} = \frac{149}{50} = 2.98. \quad (x_2, y_2) = (1.2, 2.98).
\]

\[
\therefore y(1.2) \approx 2.98.
\]
3. Solve \(xy' - y = 2x \ln x \).

\[
y' - \frac{5}{x} y = 2x \ln x
\]

\[
\int \left(\frac{5}{x} \right) \, dx = \int \frac{5}{x} \, dx = 5 \ln x.
\]

\[
y = e^{\int \frac{5}{x} \, dx} = e^{5 \ln x} = x^5.
\]

\[
\int \left[e^{-5 \ln x} (2x \ln x) \right] \, dx
\]

\[
x \int \left[e^{-5 \ln x} \right] \, dx = x e^{5 \ln x} = xe^{5 \ln x}.
\]

\[
\int \left[2x \ln x \right] \, dx = 2 \int \ln x \, dx = 2 \left(\frac{1}{2} x \ln x - \frac{1}{2} x \right) = x (\ln x)^2 - c x.
\]

\[
y = x (\ln x)^2 + c x.
\]

b) Find the largest interval where this solution is defined.

Recall: Need to find an interval where \(y \) is \(C^1 \) (continuously differentiable).

\[
y \text{ defined for } x > 0. \quad y(x) = \ln x.
\]

\[
y' = (\ln x)^2 + \frac{2x (\ln x)}{x} + c \text{ cont. on } (0, \infty).
\]

\[
\therefore \text{ solution defined on } (0, \infty).
\]
4. A large tank is partially filled with 100 gallons of fluid in which 10 pounds of salt is dissolved. Brine containing \(\frac{1}{2} \) pound of salt per gallon is pumped into the tank at a rate of 6 gal/min. The well-mixed solution is then pumped out at a slower rate of 4 gal/min. Find the number of pounds of salt in the tank after 30 minutes.

Let \(A(t) \) denote the amount of salt in the tank at time \(t \) (measured in lb).

Want to find \(A(30) \).

We know \(A(0) = 10 \) lb.

We also know:

\[
\frac{dA}{dt} = \text{(input rate of salt)} - \text{(output rate of salt)}
\]

\[
\text{Rin} = \left(\text{Concentration of salt inflow} \right) \times \left(\frac{\text{input rate}}{\text{gal/min}} \right) = \frac{1}{2} \text{ lb/gal} \times 6 \text{ gal/min} = 3 \text{ lb/min}.
\]

So, \(\text{Rin} = 3 \text{ lb/min} \).
\[
R_{\text{out}} = \left(\text{Concentration of salt outflow} \right) \times \left(\text{Output rate of brine} \right) = \left(\text{Output rate of salt} \right)
\]

\[
\frac{A}{\text{Amount of brine}} = 4 \text{ gal/min}
\]

To find this, we need to know how much brine is in the tank at time \(t \).

The liquid accumulates in the tank at the rate of \(\text{Fin} - \text{Fout} = 6 \text{ gal/min} - 4 \text{ gal/min} = 2 \text{ gal/min} \).

\[\therefore \text{After } t \text{ minutes there are } 100 + 2t \text{ gallons of brine in the tank.}\]

So, the concentration of outflow is \(\frac{A}{100 + 2t} \).

\[\therefore R_{\text{out}} = \left(\frac{A}{100 + 2t} \right) \times (4 \text{ gal/min}) = \frac{4A}{100 + 2t} \text{ lb/min}.\]

\[\therefore \frac{dA}{dt} = 3 - \frac{4A}{100 + 2t}\]

\[\therefore A + \frac{4}{100 + 2t} = 3.\]

\[\therefore A = e^{\int \frac{4}{100 + 2t} dt} = 2 \ln(100 + 2t) + C.\]

\[\text{Linear}
\]

\[\int px dx = \frac{p}{2} \ln|100 + 2t| + C.
\]

\[A = 2 \ln(100 + 2t) + C \text{ as } u = 2t + 100, \quad \frac{du}{2} = dt.
\]

\[A = \frac{3}{2} \left(2t + 100 \right)^{3} + C.
\]
\[A(0) = 10 \]

\[10 = 50 + \frac{c}{100} \Rightarrow c = -40 \cdot 10000 = -400000. \]

\[\therefore A = 50 + \frac{c}{100} - 400000 \cdot (2t + 100) \]

\[\therefore A(30) = 50 - 400000(160) = \frac{515}{8} = 64.375. \]

After 30 min, there will be \(\approx 64.38 \) lb of salt in the tank.