Recall: A relation b/w sets S & T is a subset of S x T. A relation on S is a subset of S x S.

- An equivalence relation on a set S is a relation R on S s.t. \(\forall x,y,z \in S: \)
 - Reflexive: \((x,x) \in R \) \((x=x) \)
 - Symmetric: \((x,y) \in R \iff (y,x) \in R \)
 - Transitive: \((x,y) \in R \land (y,z) \in R \implies (x,z) \in R. \)

- An order relation is a relation that is reflexive, transitive, and antisymmetric \((x,y) \in R \land (y,x) \in R \implies x=y. \)

1. Which of the following are equivalence relations?

 a) \(\equiv(a,b) \mid a \neq b \) are the same age.
 \[
 \begin{align*}
 x \sim x &. \checkmark \\
 x \sim y \equiv y \sim x &. \checkmark \\
 x \sim y \land y \sim z \equiv x \sim z &. \checkmark \text{Yes.}
 \end{align*}
 \]

 b) \(\equiv(a,b) \mid a \neq b \) have the same parents.
 \[
 \begin{align*}
 x \sim x &. \checkmark \\
 x \sim y \equiv y \sim x &. \checkmark \\
 x \sim x \land y \sim z \equiv x \sim z &. \checkmark \text{Yes.}
 \end{align*}
 \]

 c) \(\equiv(a,b) \mid a \neq b \) share a common parent.
 \[
 \begin{align*}
 x \sim x &. \checkmark \\
 x \sim y \equiv y \sim x &. \checkmark \\
 \text{Not transitive though: } x \neq y \text{ could have the same mom, but different dads}.
 \end{align*}
 \]
d. \[\{(a, b) \mid a \& b \text{ have met}\} \]

Not transitive.

e. \[\{(a, b) \mid a \& b \text{ speak common languages}\} \]

Not transitive.

d. Which of the following are equivalence relations of order relations?

a. \[\{(a, b) \mid a \text{ is an ancestor of } b\} \]

Suppose every individual is an ancestor of itself.

\[x \sim x, \quad y \sim y, \quad x \sim y \quad \text{Not symmetric.} \]

\[x \sim y \land y \sim x \iff x = y \]

\[x \sim y \land y \sim z \iff x \sim z. \quad \checkmark \]

\[x \sim x \quad \checkmark \]

\[x \sim y \quad \checkmark \]

\[x \sim z \quad \checkmark \]

\[\therefore \text{order relation.} \]

b. \[(x_1, y_1) \sim (x_2, y_2) \iff x_1 y_2 = x_2 y_1, \text{ where } x, y, x_1, y_1 \text{ positive integers.} \]

\[(x_1, y_1) \sim (x_1, y_1), \quad \text{since } x_1 y_1 = y_1 x_1. \quad \checkmark \]

\[(x_1, y_1) \sim (x_2, y_2) \iff x_1 y_2 = x_2 y_1 \iff (x_2, y_2) \sim (x_1, y_1). \quad \checkmark \]

Suppose \[(x_1, y_1) \sim (x_2, y_2) \& (x_2, y_2) \sim (x_3, y_3) \]

\[x_1 y_2 = x_2 y_1 \quad \land \quad x_2 y_3 = y_2 x_3. \quad \text{WTS } x_1 y_3 = x_3 y_1, \]

\[x_2 = \frac{x_1 y_2}{y_1} \]

\[\frac{x_2 y_3}{y_1} \]

\[\frac{x_1 y_2 y_3}{y_1} = y_2 x_3 \iff x_1 y_3 = x_3 y_1 \iff (x_1, y_1) \sim (x_3, y_3). \quad \checkmark \]

\[\therefore \text{Equivalence relation.} \]
3. On the set \(\mathbb{Z} \times \{1, 2, 3\} \) consider the equivalence relations:

\(R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\} \) and

\(R_2 = \{(1,1), (2,2), (3,3), (2,1), (1,3)\} \).

a) Is \(R_1 \cup R_2 \) an equivalence relation?

(1,2) and (2,3) are in our set, so \(1 \cup 2 \) and \(2 \cup 3 \).

But 1 \(\times 3 \) by (1,3) not in \(R_1 \cup R_2 \).

So \(R_1 \cup R_2 \) not have transitive property = Not an equivalence relation.

Recall: Given a set \(S \) and an equivalence relation \(R \) on \(S \), the set of elements equivalent to \(x \in S \) is the equivalence class containing \(x \).

b) List the equivalence classes of \(R_1 \). List the equivalence classes of \(R_2 \).

\(R_1 : [1J] = \{1, 2\}, [3J] = \{3\} \).

\(R_2 : [1J] = \{1\}, [2J] = \{2, 3\} \).

4. The relation \(R \) on \(\mathbb{Z} \) is defined by \(x \sim y \iff x + 3y \) is even. Prove that this is an equivalence relation. Find the equivalence classes.

- \(x \sim x \) since \(x + 3x = 4x = 2(2x) \) is even.
- \(x \sim y \iff x + 3y \) even \iff \(x = 2k - 3y \). Then \(y + 3x = y + 3(2k - 3y) \)
 \[= y + 6k - 9y = 6k - 8y = 2(3k - 4y) \] even \iff \(y \sim x \).
• Suppose \(x \sim y \) and \(y \sim z \) \(\equiv\) \(x + 3y - 2z = 2k \quad y + 3z = 2l \)

\(\equiv\) \(x = 2k - 3y + 3z = 2l - y \)

\(\equiv\) \(x + 3z = 2k - 3y + 2l - y = 2k + 2l - 4y = 2(k + l - 2y) \) even

\(\equiv\) \(x \sim z \).

\(\therefore\) Equivalence Relation.

\(\{0\} = \{x \in \mathbb{Z} \mid x \sim 0\} = \{x \in \mathbb{Z} \mid x + 3(0) \text{ even}\} = \{x \in \mathbb{Z} \mid x \text{ even}\}.

\(\{1\} = \{x \in \mathbb{Z} \mid x \sim 1\} = \{x \in \mathbb{Z} \mid x + 3(1) \text{ even}\} = \{x \in \mathbb{Z} \mid x \text{ odd}\}.

This partitions \(\mathbb{Z} \) into two distinct equivalence classes.

• Recall: Given \(n \in \mathbb{N} \), \(x, y \in \mathbb{Z} \) are congruent modulo \(n \) if \(x - y \) is divisible by \(n \), i.e., \(x \equiv y \mod n \). This gives an equivalence relation on \(\mathbb{Z} \).