Background: In each of the following, what is the independent variable and which is the dependent variable.

(1) \(y(x) = x^3 \). \(x \) independent, \(y \) dependent.

(2) \(\frac{dx}{dt} = 2 \). \(x \) dependent, \(t \) independent.

(3) \(\frac{dy}{dx^2} + \frac{dy}{dx} = y + x \). \(x \) and \(t \) independent, \(y \) dependent.

Notation: \(\frac{dy}{dx} = y_x = y' \).

Note: Dependent variables should be thought of as functions. e.g.: \(y(x) = x^2 \) is sometimes written: \(y = x^2 \) when it is clear \(y \) is dependent. i.e., \(y : \mathbb{R} \rightarrow \mathbb{R} \) \(x \rightarrow x^2 \).

Definition: An equation containing the derivatives of one or more unknown functions (dependent variables) w.r.t. a single independent variable is called an ordinary differential equation (ODE).

e.g.: \(\frac{dy}{dx} = x^3 \) is an ODE. Its solution is:

\[
y = \int x^3 \, dx = \frac{1}{4} x^4 + c. \text{ (on } (-\infty, \infty) \text{)}.\]
\[e.g. \quad y'' + x^8 y''' + y'' = 0, \quad b \quad \frac{dy}{dx} + 7y = \left(\frac{dy}{dx} \right)^5 = 8, \]

\[C \quad \frac{dt}{dx} + \frac{d^2y}{dt^2} = t^2 + xy \quad \text{are all examples of ODE's.} \]

\[\text{Def}^n: \quad \text{An eq'n involving partial derivatives of one or more unknown functions of two or more independent variables is called a partial differential eq'n (PDE).} \]

\[e.g. \quad \frac{d^2y}{dx^2} + \frac{dy}{dt} = 8 \quad \text{is a PDE. (It has a independent variables } x \text{ and } t).} \]

\[* \quad \text{In this course, we will only consider ODE's. Therefore, instead of writing ODE's, I'll write DE.} * \]

\[\text{Def}^n: \quad \text{The order of a DE is the order of the highest derivative in the eq'n.} \]

\[e.g.: \quad a \quad \text{third-order}, \quad b \quad \text{and-order}, \quad c \quad \text{4th-order.} \]

\[\text{Notation:} \quad \text{An } n^{th} \text{-order DE in one dependent variable is often expressed as } F(x, y, y', \ldots, y^{(n)}) = 0, \text{ where } F: \mathbb{R}^{n+2} \rightarrow \mathbb{R}. \]

\[\text{Def}^n: \quad \text{An } n^{th} \text{-order DE } F(x, y, y', \ldots, y^{(n)}) = 0 \text{ is linear if } F \text{ is linear in the variables } y, y', \ldots, y^{(n)}. \]

\[\text{I.e. } \quad F(x, y, y', \ldots, y^{(n)}) = a_0(x) \frac{dy}{dx} + a_1(x) y + a_2(x) y' + \ldots + a_n(x) y^{(n)} = 0. \]

\[\text{Def}^n: \quad \text{A DE is nonlinear is just a DE that is not linear.} \]
Example 1: \(y^3 + \frac{dy}{dx}^3 + xy + z = 0. \) \(\triangleleft \) **Linear**

Example 2: \(x^2 y + \left(\frac{dy}{dx} \right)^3 = 0. \) \(\triangleleft \) **Nonlinear, b/c \(\frac{dy}{dx}^3 \)**

Example 3: \(\sin y + \frac{dy}{dx} = 0. \) \(\triangleleft \) **Nonlinear, b/c \(\sin y \)**

Example 4: \(y \frac{dy}{dx} + x = 0. \) \(\triangleleft \) **Nonlinear, b/c \(y \frac{dy}{dx} \)**

Definition: A function \(y: \mathbb{R} \rightarrow \mathbb{R} \) is called \(C^n \) on an interval if it possesses at least \(n \) derivatives that are continuous on \(I \).

Example 1: Any polynomial is \(C^n \), since polynomials are continuous and the derivative of a polynomial is a polynomial.

- \(y = \frac{1}{x} \) is continuous at all points except zero.
- \(\Rightarrow \) it's \(C^0 \) on \((0, \infty) \) and \((-\infty, 0) \).
- Its \(n \)th derivative is \(\frac{c}{x^n} \) for some constant \(c \).
- \(\frac{1}{x} \) is \(C^n \) on any interval not containing zero.

Definition: A solution of an \(n \)th-order DE on an interval \(I \) is any function \(y, C^n \) on \(I \), which, when substituted into the DE reduces the equation to an identity.

- \(\text{i.e., } F(x, y, y', \ldots, y^{(n)}) = 0 \text{ for all } x \in I \).

Example 2: Consider the DE \(y' = y \cos x \).

- \(y = C e^{\sin x} \) is an explicit solution on \((-\infty, \infty) \), since \(y = \cos x \cdot e^{\sin x} \) is continuous on \((-\infty, \infty) \) and \(y \cos x = C e^{\sin x} \cos x = y \).
Notice: A solution includes 2 things: a function f on an interval I.

Example: The graph of $y = \frac{1}{x}$ looks like:

The DE $xy' + y = 0$ has $y = \frac{1}{x}$ as a solution on $(0, \infty)$ since $y' = -\frac{1}{x^2}$ cont. on $(0, \infty)$ & $xy' + y = x(-\frac{1}{x}) + \frac{1}{x} = 0$.

The graph of the solution is:

Definition: An implicit solution of a DE on an interval I is a relation $G(x, y) = 0$ s.t. I at least one function y that satisfies both the DE & $G(x, y) = 0$.

Example: Consider the DE $\frac{dy}{dx} = -\frac{x}{y}$.

$x^2 + y^2 = 25$ is an implicit solution on $(0, 5)$, since $y = \sqrt{25 - x^2}$ satisfies $x^2 + y^2 = 25$ & the DE:

$\frac{dy}{dx} = \frac{-2x}{2\sqrt{25 - x^2}} = -\frac{x}{\sqrt{25 - x^2}}$. Here, $y = \sqrt{25 - x^2}$ is an explicit solution on $(0, 5)$.

Definition: A solution of a DE containing one arbitrary constant c is called a one-parameter family of solutions. A solution with no constants is an n-parameter family. A solution with no arbitrary constants is a particular solution.
The DE \(\frac{dy}{dx} = 2x \) has a one-parameter family of solutions \(y = x^2 + C \). \(y = x^2 + 1 \) would be a particular solution. (Both solutions on \((-\infty, \infty)\).

Def. A singular solution of a DE is a solution which is not a member of a family of solutions of the DE.

Consider the DE \(\frac{dy}{dx} = xy^2 \). \(y = (\frac{4}{3}x^3 + C)^{1/2} \) is a family of solutions of the DE on \((-\infty, 0)\).

Since \(y = C \) and \(\frac{dy}{dx} = 2(x^2) \cdot 2C \), then \(C = xy^2 \).

But \(y = 0 \) is also a solution, since \(\frac{dy}{dx} = 0 = x(0)^{1/2} \).

However, there's no value of \(C \) which makes \(y = (\frac{4}{3}x^3 + C)^{1/2} \) equal to zero. \(\therefore 0 \) is a singular solution.

Def. A system of DEs is a system of 2 or more eqns involving derivatives of 2 or more unknown functions of a single independent variable.

A solution of such a system of \(N \) eqns are \(N \) functions \(y_1(x), \ldots, y_N(x) \) on a common interval \(I \), that satisfy the system on this interval.

e.g. \(\begin{cases} \frac{dx}{dt} = x + 3y \\ \frac{dy}{dt} = 5x + 3y \end{cases} \) is a system of 2 DEs with solution \(\begin{cases} x = 3e^{-2t} + 3e^{6t} \\ y = -e^{-2t} + 5e^{6t} \end{cases} \) \(\text{defined on } (-\infty, \infty) \).

Indeed, \(\frac{dx}{dt} = -2e^{-2t} + 18e^{6t} = x + 3y \).

\(\frac{dy}{dt} = 2e^{-2t} + 30e^{6t} = 5x + 3y \).
1.2: IVP: An n^th-order initial value problem (IVP) is the problem of solving an n^th order DE $y^{(n)} = F(x, y, y', ..., y^{(n-1)})$ on some interval I containing x_0, subject to the conditions $y(x_0) = y_0$, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$ for some constants $y_i \in \mathbb{R}$.

Example 1: Solve the IVP \[\begin{cases} y' = y \cos x \\ y(0) = a. \end{cases} \]

- $y = ce^{\sin x}$ on $(-\infty, \infty)$ solves DE since $y' = c \cos x \cdot e^{\sin x}$.
- $y(0) = a \Rightarrow a = ce^0 \Rightarrow c = a$.

\[\therefore \text{solution to IVP is} \ y = ae^{\sin x} \ on \ (-\infty, \infty). \]

Example 2: One could show $y = c_1 e^x + c_2 e^{-x}$ is a 2-parameter family of solutions of the IVP $y'' - y = 0$. Find a solution to the IVP $y'' - y = 0$, $y(0) = 1$, $y'(0) = 2$.

- $y' = c_1 e^x - c_2 e^{-x}$.
- $y(0) = 1 \Rightarrow 1 = c_1 + c_2$.
- $y'(0) = 2 \Rightarrow 2 = c_1 - c_2$.

\[\therefore y = 3/2 e^x - 1/2 e^{-x} \ is \ a \ solution \ on \ (-\infty, \infty). \]

Example 3: Suppose the graph below is the graph of a function $y(x)$. Suppose also that $y(x)$ satisfies the DE $y' = f(x, y)$. Give an interval where the solution of the IVP $y' = f(x, y)$, $y(0) = -1$ is defined.

- Give 3 intervals where the solution of the DE $y' = f(x, y)$ is defined.
a) The interval must contain \((0, -1)\) or \((-1, 1)\) so any smaller interval in \((-1, 1)\) would do the job too.

b) We could choose \((-\infty, -1)\) or \((-1, 1)\) or \((1, \infty)\) or any smaller intervals in those 3.

Q) When does a solution to a first-order IVP exist \& when is such a solution unique?

Theorem 1.3.1: Existence of a Unique Solution:

Let \(R = [a,b] \times [c,d] \) contain the point \((x_0, y_0)\) in its interior. If \(f(x,y) \)
and \(\frac{dy}{dx} \) are continuous on \(R \) \& \(J \) some interval \(I_0 = (y_0 - h, y_0 + h) \) in \(J \)
and contained in \([a,b] \times [c,d]\), then a unique function \(y(x) \) defined on \(I_0 \) \& \(y(x) \) is a solution of the IVP \(y' = f(x,y), \ y(x_0) = y_0 \).

Example: Consider the DE \(y' = 2y/x \). The function \(y(x) = cx^2 \) satisfies this DE. \(y' = 2cx = 2y/x \).

The graph of this 1-param. family looks like:
a. Does the IVP \(y' = 2y/x, \ y(0) = 0 \) have a unique solution?

b. Does the IVP \(y' = 2y/x, \ y(x) = y_0 \) for \(x_0 \neq 0 \) have a unique solution?

In the notation of Theorem 1.2.1, here

\[f(x,y) = \frac{2y}{x}, \quad \frac{\partial f}{\partial y} = \frac{2}{x}. \]

These functions are cont. on \(\mathbb{R} \setminus \{0\} \times \mathbb{R} \) not containing 0.

\[\therefore \text{By Theorem 1.2.1, if } y(x_0) = y_0 \text{ for } x_0 \neq 0, \text{ \exists some interval } I_0: \{x_0 - h, x_0 + h\} \text{ s.t. the IVP in } \quad \]

\[\text{has a unique solution.} \]

\[\text{Since } x = 0 \text{ fails Theorem 1.2.1, this Theorem tells us nothing in } \quad \]

\[\text{However, looking at our family of graphs suggests there are infinitely many solutions to the IVP in } \quad \]

\[\text{Indeed, } y_1(x) = x^2 \text{ and } y_2(x) = 2x^2 \text{ are both s.t. } y(0) = 0 \text{ satisfy the IVP, } \quad \]

\[\text{in } \quad \]

\[\text{has no unique solution.} \]
25. Verify that the piece-wise-defined function
\[y = \begin{cases}
-x^2, & x < 0 \\
-x^2 + x^2, & x \geq 0
\end{cases} \]
is a solution of the DE
\[xy' - 2y = 0 \text{ on } (-\infty, \infty). \]

The DE is 1st-order, so must show \(y \) satisfies
DE is \(C^1 \) on \((-\infty, \infty) \).

\[x < 0: \quad \frac{dy}{dx} (-x^2) = -2x. \quad xy' - 2y = x(-2x) - 2(-x^2) = 2x^2 = 0. \]

\[x \geq 0: \quad \frac{dy}{dx} (x^2) = 2x. \quad xy' - 2y = x(2x) - 2(x^2) = 0. \]

Need to check if \(y' \) continuous on \((-\infty, \infty) \).

\[y' = \begin{cases}
-2x, & x < 0 \\
2x, & x \geq 0
\end{cases} \]

\[\lim_{x \to 10^-} y' = \lim_{x \to 10^+} y' = 0. \]

\[\lim_{x \to 10^-} y = \lim_{x \to 10^+} y = 0. \]

\[\therefore \text{ DE is } C^1 \text{ on } (-\infty, \infty). \]

26. In Ex. 5 we saw \(y = \sqrt[3]{5-x^2} \) and \(y = -\sqrt[3]{5-x^2} \)
are solutions of \(y' = -\frac{y}{x} \) on \((-5, 5)\). Explain why
\[y = \begin{cases}
\sqrt[3]{5-x^2}, & 0 \leq x < 5 \text{ Not a solution} \\
-x^2, & -5 \leq x \leq 0
\end{cases} \]

We can see \(y \) is not

\[\lim_{x \to 0^+} y = 5. \]
\[\lim_{x \to 0^-} y = -5. \]
\[\lim_{x \to 10^+} y = -5. \]
\[\lim_{x \to 10^-} y = 5. \]
Recall:

Differentiable at \(x \neq 1 \)

\(\text{cont. } e^{-x} \)

\(\Rightarrow \text{not cont. } e^{-x} \)

\(\Rightarrow \text{not diff. at } x \neq 1 \)

\(\Rightarrow y \text{ not cont. at } x = 5 \Rightarrow y \text{ not diff. at } x = 0 \)

\(\Rightarrow y \text{ not defined at } x = 0 \).

\[\therefore y \text{ is not a solution on } (-5, 5). \]

\[y \text{ not } C^1 \text{ on this interval.} \]

43. Given that \(y = \sin x \) is an explicit solution of the 1st-order DE \(y' = \sqrt{1 - y^2} \), find an interval of definition.

We need to find an interval where \(y = \cos x \) is defined everywhere, \(\Rightarrow y' = \cos x \text{ cont.} \).

\[y' = \sqrt{1 - y^2} = \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} = \cos x \]

\[y = \sin x \Rightarrow y' = \cos x. \text{ So, } \cos x = \left| \cos x \right| \text{ when } \cos x > 0. \]

A possible interval would be \((0, \pi) \).

The given graph represents the graph of an implicit solution \(G(x, y) = 0 \) of a DE \(y' = f(x, y) \), where \(G(x, y) = 0 \) implicitly defines several solutions of the DE. Mark off segments of the corr. to graphs of solutions. Estimate an interval of definition of each solution.

We need each \(f \) to be a function and differentiable.

\(f(x) = y ... \text{ can't have state of } \infty \)

Each \(x \) maps to one \(y \) value.