Tutorial Info:

- **Tutorial Website:** http://ms.mcmaster.ca/~dedieula/2Z03.html
- **Office Hours:** Mondays 3pm - 5pm (in the Math Help Centre)
Tutorial #4:

- 3.1 Theory of Linear Equations
Tutorial #4:

- 3.1 Theory of Linear Equations
 - Linearly Independence
Tutorial #4:

- 3.1 Theory of Linear Equations
 - Linearity Independence
 - Wronskian
3.1 Theory of Linear Equations
- Linearly Independence
- Wronskian
- Fundamental Set of Solutions
Tutorial #4:

3.1 Theory of Linear Equations
- Linearly Independence
- Wronskian
- Fundamental Set of Solutions
- General Solution
Tutorial #4:

- 3.1 Theory of Linear Equations
 - Linearly Independence
 - Wronskian
 - Fundamental Set of Solutions
 - General Solution

- 3.3 Homogeneous Linear Equations with Constant Coefficients
Tutorial #4:

- 3.1 Theory of Linear Equations
 - Linearly Independence
 - Wronskian
 - Fundamental Set of Solutions
 - General Solution

- 3.3 Homogeneous Linear Equations with Constant Coefficients
 - Finding Rational Roots
Tutorial #4:

- 3.1 Theory of Linear Equations
 - Linearly Independence
 - Wronskian
 - Fundamental Set of Solutions
 - General Solution

- 3.3 Homogeneous Linear Equations with Constant Coefficients
 - Finding Rational Roots
 - Finding Complex Roots
3.1 Theory of Linear Equations

1. Is the set of functions \(\{ 1 + x, x, x^2 \} \) linearly independent on \((-\infty, \infty) \)?
3.1 Theory of Linear Equations

- 1. Is the set of functions \(\{1 + x, x, x^2\} \) linearly independent on \((-\infty, \infty) \)?

- **Recall:** A set of functions \(f_1(x), \ldots, f_n(x) \) are **linearly independent** on an interval \(I \) if \(c_1f_1(x) + \cdots + c_nf_n(x) = 0 \) for all \(x \) in \(I \) \iff \(c_1 = \cdots c_n = 0 \).
3.1 Theory of Linear Equations

1. Is the set of functions \(\{1 + x, x, x^2\} \) linearly independent on \((-\infty, \infty)\)?

Recall: A set of functions \(f_1(x), \ldots, f_n(x) \) are linearly independent on an interval \(I \) if \(c_1 f_1(x) + \cdots + c_n f_n(x) = 0 \) for all \(x \) in \(I \) \(\iff \) \(c_1 = \cdots c_n = 0 \).

Criterion for Linear Independent Solutions: Let \(y_1, \ldots, y_n \) be solutions of a homogeneous linear \(n \)-th order DE on an interval \(I \). Then this set of solutions is linearly independent on \(I \) if and only if the Wronskian \(W(y_1, \ldots, y_n) \neq 0 \) for every \(x \) in \(I \).
2. Suppose f_1, f_2, and f_3 are solutions to a second-order linear homogeneous differential equation. Is \(\{f_1, f_2, f_3\} \) a fundamental set of solutions?
3.1 Theory of Linear Equations

- 2. Suppose f_1, f_2, and f_3 are solutions to a second-order linear homogeneous differential equation. Is \{f_1,f_2,f_3\} a fundamental set of solutions?

- **Recall:** A basis for the space of solutions of an n-th order homogenous linear equation $a_n y^{(n)} + \cdots + a_1 y' + a_0 = 0$ is called a fundamental set of solutions.

 We know the dimension of the solution space is n, so to find a basis, it suffices to find n linearly independent solutions.
3.1 Theory of Linear Equations

- 3. The functions e^t and te^t satisfy the differential equation $y'' - 2y' + y = 0$. Is $y = c_1 e^t + c_2 te^t$ a general solution of this differential equation?
3. The functions e^t and te^t satisfy the differential equation $y'' - 2y' + y = 0$. Is $y = c_1e^t + c_2te^t$ a general solution of this differential equation?

Recall: If $\{y_1, \ldots, y_n\}$ is a fundamental set of solutions on I for an n-th order linear DE, then the **general solution** on I is $y = c_1y_1 + \cdots c_ny_n$, where the c_i are arbitrary constants.
3.3 Homogenous Linear Equations with Constant Coefficients:

- 4. Find the general solution of $y^{(3)} + 8y = 0$.

Recall: To solve, first we plug $y = e^{mx}$ into the equation and find the roots of the corresponding auxiliary equation. We can go about finding the roots of this auxiliary equation in a variety of ways.
3.3 Homogenous Linear Equations with Constant Coefficients:

- **4.** Find the general solution of $y^{(3)} + 8y = 0$.

- **Recall:** To solve, first we plug $y = e^{mx}$ into the equation and find the roots of the corresponding auxiliary equation.
3.3 Homogenous Linear Equations with Constant Coefficients:

- 4. Find the general solution of $y^{(3)} + 8y = 0$.

- **Recall:** To solve, first we plug $y = e^{mx}$ into the equation and find the roots of the corresponding auxiliary equation.

- *We can go about finding the roots of this auxiliary equation in a variety of ways.*
3.3 Homogenous Linear Equations with Constant Coefficients:

- **Method 1**: Find one root \(d \), then divide \(m^3 + 8 \) by \((m - d) \).
3.3 Homogenous Linear Equations with Constant Coefficients:

- **Method 1:** Find one root d, then divide $m^3 + 8$ by $(m - d)$.

- By inspection, we can see that $m = -2$ is a root. A more systematic approach is given by the following:
3.3 Homogenous Linear Equations with Constant Coefficients:

- **Method 1:** Find one root d, then divide $m^3 + 8$ by $(m - d)$.

- By inspection, we can see that $m = -2$ is a root. A more systematic approach is given by the following:

- **Rational Roots Test (pg. 122):** If $m_1 = \frac{p}{q}$ is a rational root (expressed in lowest terms) of an auxiliary equation with integer coefficients

 \[a_nm^n + \ldots + a_1m + a_0, \]

 then p is a factor of a_0 and q is a factor of a_n.
3.3 Homogeneous Linear Equations with Constant Coefficients:

- **Method 2: Finding roots over \(\mathbb{C} \):** Given auxiliary equation

 \[
 a_n m^n + \ldots + a_1 m + a_0,
 \]

 we know there will be \(n \) roots over the complex numbers (with some multiplicity). By working in polar coordinates, we can find these roots \(re^{i\theta} \) (think back to Math 1ZC3/1B03).
3.3 Homogenous Linear Equations with Constant Coefficients:

- **Method 2: Finding roots over** \(\mathbb{C} \): Given auxiliary equation

\[
a_n m^n + \ldots + a_1 m + a_0,
\]

we know there will be \(n \) roots over the complex numbers (with some multiplicity). By working in polar coordinates, we can find these roots \(re^{i\theta} \) (think back to Math 1ZC3/1B03).

- **Exercise** Find the five roots of \(m^5 + 32 = 0 \), and use this to solve \(y^{(5)} + 32y = 0 \).
3.3 Homogenous Linear Equations with Constant Coefficients:

- Recall:
 - If there are j distinct roots m_1, \ldots, m_j then the general solution contains a linear combination of $e^{m_1x}, \ldots, e^{m_jx}$.
 - If m_1 is a root of multiplicity q, then the general solution contains a linear combination of $e^{m_1x}, xe^{m_1x}, x^2e^{m_1x}, \ldots, x^{q-1}e^{m_1x}$.
 - Given complex roots $m_1 = \alpha + \beta$ and $m_2 = \alpha - \beta$, using Euler’s formula, it’s always possible to write $c_1e^{m_1x} + c_2e^{m_2x}$ as $e^{\alpha x} [k_1\cos(\beta x) + k_2\sin(\beta x)]$, for constants c_1, c_2, k_1, k_2.
3.3 Homogenous Linear Equations with Constant Coefficients:

- 5. Solve the IVP $y'' + 2y' = 0$, $y(0) = 1$, $y'(0) = 1$.
3.3 Homogenous Linear Equations with Constant Coefficients:

- 5. Solve the IVP $y'' + 2y' = 0$, $y(0) = 1$, $y'(0) = 1$.

- 6. Find a general solution for $6y^{(4)} - y''' + 4y'' - y' - 2y = 0$.