1 Exercise 1: Sums of powers of divisors

1.1 Problem

Let n be a positive integer. Let $k \in \mathbb{N}$. Prove that

$$\sum_{d|n} d^k = \prod_{p \text{ prime}} \left(p^{0k} + p^{1k} + \cdots + p^{v_p(n)-k} \right).$$

Here, the summation sign “$\sum_{d|n}$” means a sum over all positive divisors d of n.

1.2 Solution

[...]
2 Exercise 2: Another version of Jacobi’s two-squares theorem

2.1 Problem

Let n be a positive integer. Prove that
\[
\left(\text{the number of pairs } (x, y) \in \mathbb{Z}^2 \text{ such that } n = x^2 + y^2 \right)
=
4 \left(\text{the number of positive divisors } d \text{ of } n \text{ such that } d \equiv 1 \mod 4 \right)
- 4 \left(\text{the number of positive divisors } d \text{ of } n \text{ such that } d \equiv 3 \mod 4 \right).
\]

[Hint: The formula for the left hand side that we proved in class can be freely used.]

2.2 Solution

[...]

3 Exercise 3: Characterizing Gaussian primes

3.1 Problem

Let π be a Gaussian prime.

Prove the following:

(a) If π is unit-equivalent to an integer, then π is unit-equivalent to a prime of Type 3.

(Recall that a prime p is said to be of Type 3 if it is congruent to 3 modulo 4.)

Assume, from now on, that π is not unit-equivalent to any integer. Let (p_1, p_2, \ldots, p_k) be a prime factorization of the positive integer $N(\pi)$. (Thus, p_1, p_2, \ldots, p_k are primes such that $N(\pi) = p_1 p_2 \cdots p_k$.)

(b) Prove that $\pi | p_i$ for some $i \in \{1, 2, \ldots, k\}$.

Fix an $i \in \{1, 2, \ldots, k\}$ such that $\pi | p_i$.

(c) Prove that $p_i = \pi \bar{\pi}$.

(d) Prove that p_i is a prime of Type 1 or of Type 2.

(Recall that a prime p is said to be of Type 1 if it is congruent to 1 modulo 4, and is said to be of Type 2 if it equals 2.)

3.2 Remark

This exercise yields that the Gaussian primes are the primes of Type 3 and the Gaussian prime divisors of the primes of Types 1 and 2 (up to unit-equivalence). Conversely, any of the latter are indeed Gaussian primes (as we proved in class). This completes the characterization of Gaussian primes.

\[1\]The unqualified word “prime” always means a prime in the original sense, i.e., an integer $p > 1$ whose only positive divisors are 1 and $p.$
3.3 Solution

[...]

4 Exercise 4: Gaussian integers modulo a Gaussian integer

4.1 Problem
For any Gaussian integer τ, we let \equiv_τ be the binary relation on $\mathbb{Z}[i]$ defined by

$$
(\alpha \equiv_\tau \beta) \iff (\alpha \equiv \beta \mod \tau).
$$

It is straightforward to see (just as in the case of integers) that this relation \equiv_τ is an equivalence relation. (You don’t need to prove this.) We shall refer to the equivalence classes of this relation \equiv_τ as the Gaussian residue classes modulo τ; let $\mathbb{Z}[i]/\tau$ be the set of all these classes.

Let n be a nonzero integer.

Prove that the equivalence classes of the relation \equiv_n (on $\mathbb{Z}[i]$) are the n^2 classes $[a + bi]_n$ for $a, b \in \{0, 1, \ldots, |n| - 1\}$, and that these n^2 classes are all distinct.

4.2 Remark
This exercise yields $|\mathbb{Z}[i]/n| = n^2 = N(n)$ for any nonzero integer n. This is [ConradG, Lemma 7.15]. (Conrad proves this “by example”; you can follow the argument but you should write it up in full generality.)

More generally, $|\mathbb{Z}[i]/\tau| = N(\tau)$ for any nonzero Gaussian integer τ. This is proven in [ConradG, Theorem 7.14] (using the above exercise as a stepping stone).

4.3 Solution

[...]

5 Exercise 5: A Fibonacci divisibility

5.1 Problem
Let $\phi = \frac{1 + \sqrt{5}}{2}$ and $\psi = \frac{1 - \sqrt{5}}{2}$ be the two (real) roots of the polynomial $x^2 - x - 1$. (The number ϕ is known as the golden ratio.) It is easy to see that $\phi + \psi = 1$ and $\phi \cdot \psi = -1$.

Let $\mathbb{Z}[\phi]$ be the set of all reals of the form $a + b\phi$ with $a, b \in \mathbb{Z}$.

(a) Prove that any $\alpha, \beta \in \mathbb{Z}[\phi]$ satisfy $\alpha + \beta \in \mathbb{Z}[\phi]$ and $\alpha - \beta \in \mathbb{Z}[\phi]$ and $\alpha \beta \in \mathbb{Z}[\phi]$.

Darij Grinberg, 00000000
dgrinber@umn.edu
(In the terminology of abstract algebra, this is saying that \(\mathbb{Z}[\phi] \) is a subring of \(\mathbb{R} \).)

(b) Prove that every element of \(\mathbb{Z}[\phi] \) can be written as \(a + b\phi \) for a unique pair \((a, b)\) of integers. (In other words, if four integers \(a, b, c, d \) satisfy \(a + b\phi = c + d\phi \), then \(a = c \) and \(b = d \).)

Given two elements \(\alpha \) and \(\beta \) of \(\mathbb{Z}[\phi] \), we say that \(\alpha \mid \beta \) \(\text{in} \) \(\mathbb{Z}[\phi] \) if and only if there exists some \(\gamma \in \mathbb{Z}[\phi] \) such that \(\beta = \alpha \gamma \). Thus, we have defined divisibility in \(\mathbb{Z}[\phi] \). Basic properties of divisibility of integers (such as Proposition 2.2.4) still apply to divisibility in \(\mathbb{Z}[\phi] \) (with the same proofs).

(c) If \(a \) and \(b \) are two elements of \(\mathbb{Z} \) such that \(a \mid b \) \(\text{in} \) \(\mathbb{Z}[\phi] \), then prove that \(a \mid b \) \(\text{in} \) \(\mathbb{Z} \).

Let \((f_0, f_1, f_2, \ldots)\) be the sequence of nonnegative integers defined recursively by

\[
f_0 = 0, \quad f_1 = 1, \quad \text{and} \quad f_n = f_{n-1} + f_{n-2} \quad \text{for all} \quad n \geq 2.
\]

This is the so-called Fibonacci sequence (and continues with \(f_2 = 1, f_3 = 2, f_4 = 3, f_5 = 5 \) etc.).

It is well-known (Binet’s formula) that

\[
f_n = \frac{\phi^n - \psi^n}{\sqrt{5}} \quad \text{for all} \quad n \geq 0.
\]

(You don’t need to prove this; there is a completely straightforward proof by induction on \(n \).)

(d) Prove that \(f_d \mid f_{dn} \) for any nonnegative integers \(d \) and \(n \).

[Hint: Lemma 2.10.11 \(\text{(a)} \) holds not just for integers.]

5.2 Remark

This exercise (specifically its part \(\text{(d)} \)) is an example of how a property of integers (here, \(f_d \mid f_{dn} \)) can often be proved by working in a larger domain (in our case, \(\mathbb{Z}[\phi] \)). Another example is our study of sums of two perfect squares using Gaussian integers (done in class). There are various others. While part \(\text{(d)} \) of this exercise has fairly simple solutions using integer arithmetic alone, some other properties of Fibonacci numbers are best understood by means of working in \(\mathbb{Z}[\phi] \). For example, if \(p \neq 5 \) is a prime, then one of the two Fibonacci numbers \(f_{p-1} \) and \(f_{p+1} \) is divisible by \(p \), while the other is \(\equiv 1 \mod p \).

5.3 Solution

[...]
6 EXERCISE 6: NON-UNIQUE FACTORIZATION IN $\mathbb{Z} [\sqrt{-3}]$

6.1 Problem

We let $\sqrt{-3}$ denote the complex number $\sqrt{3}i$.

Let $\mathbb{Z} [\sqrt{-3}]$ be the set of all complex numbers of the form $a + b\sqrt{-3}$ with $a, b \in \mathbb{Z}$. These complex numbers are called the 3-Gaussian integers.

It is easy to see that the set $\mathbb{Z} [\sqrt{-3}]$ is closed under addition, subtraction and multiplication (i.e., that any $\alpha, \beta \in \mathbb{Z} [\sqrt{-3}]$ satisfy $\alpha + \beta \in \mathbb{Z} [\sqrt{-3}]$ and $\alpha - \beta \in \mathbb{Z} [\sqrt{-3}]$ and $\alpha \beta \in \mathbb{Z} [\sqrt{-3}]$). (In the terminology of abstract algebra, this is saying that $\mathbb{Z} [\sqrt{-3}]$ is a subring of \mathbb{C}.)

It is also easy to see that each element of $\mathbb{Z} [\sqrt{-3}]$ can be written as $a + b\sqrt{-3}$ for a unique pair (a, b) of integers.

(a) Prove that each 3-Gaussian integer α satisfies $N(\alpha) \in \mathbb{N}$ and $N(\alpha) \not\equiv 2 \mod 3$.

(Recall that $N(\alpha)$ is defined for every complex number α, and thus for every 3-Gaussian integer α, since 3-Gaussian integers are complex numbers.)

Given two elements α and β of $\mathbb{Z} [\sqrt{-3}]$, we say that $\alpha | \beta$ in $\mathbb{Z} [\sqrt{-3}]$ if and only if there exists some $\gamma \in \mathbb{Z} [\sqrt{-3}]$ such that $\beta = \alpha \gamma$. Thus, we have defined divisibility in $\mathbb{Z} [\sqrt{-3}]$. Basic properties of divisibility of integers (such as Proposition 2.2.4) still apply to divisibility in $\mathbb{Z} [\sqrt{-3}]$ (with the same proofs).

If $\alpha \in \mathbb{Z} [\sqrt{-3}]$, then a 3-Gaussian divisor of α shall mean a $\beta \in \mathbb{Z} [\sqrt{-3}]$ such that $\beta | \alpha$ in $\mathbb{Z} [\sqrt{-3}]$.

We define the notions of “inverse”, “unit” and “unit-equivalent” for 3-Gaussian integers as we did for Gaussian integers.

A nonzero 3-Gaussian integer π that is not a unit is called a 3-Gaussian prime if each 3-Gaussian divisor of π is either a unit or unit-equivalent to π.

(b) List all the 3-Gaussian integers having norms < 4.

(c) List all units in $\mathbb{Z} [\sqrt{-3}]$.

(d) Prove that $2, 1 + \sqrt{-3}$ and $1 - \sqrt{-3}$ are 3-Gaussian primes.

(e) Prove that $2 \cdot 2 = (1 + \sqrt{-3}) \cdot (1 - \sqrt{-3})$.

(f) Define two 3-Gaussian integers α and β by $\alpha = 2$ and $\beta = 1 + \sqrt{-3}$. Prove that there exist no 3-Gaussian integers γ and ρ such that $\alpha = \gamma \beta + \rho$ and $N(\rho) < N(\beta)$.

[Hint: Your list in part (b) should contain 5 entries. Your list in part (c) should contain 2 entries: Unlike the ring $\mathbb{Z} [i]$ with its 4 units, the ring $\mathbb{Z} [\sqrt{-3}]$ has only 2 units.

For (d), discuss the norm of any possible 3-Gaussian divisor.]

6.2 Remark

Parts (d) and (e) of this exercise show that unique factorization into primes is not automatically preserved when we extend a number system. Neither is division with remainder, as part (f) illustrates (though we already have seen the geometric reason for this in class). (Neither is the existence of a well-behaved greatest common divisor.)
6.3 Solution

[...]