Exercise 3: Entangled inverses

Let K be a ring.

A left inverse of an element $x \in K$ is defined to be a $y \in K$ such that $yx = 1$.

A right inverse of an element $x \in K$ is defined to be a $y \in K$ such that $xy = 1$.

Let a and b be two elements of K. Prove the following:

(a) If c is a left inverse of $1 - ab$, then $1 + bca$ is a left inverse of $1 - ba$.

(b) If c is a right inverse of $1 - ab$, then $1 + bca$ is a right inverse of $1 - ba$.

(c) If c is an inverse of $1 - ab$, then $1 + bca$ is an inverse of $1 - ba$.

Here and in the following, the word “inverse” (unless qualified with an adjective) means “multiplicative inverse”.
SOLUTION

(a) Assume that c is a left inverse of $1 - ab$. That is, $c(1 - ab) = 1$. It follows that:

\[(1 + bca)(1 - ba)\]
\[= (1 - ba) + bca(1 - ba)\]
(by distributivity, since \mathbb{K} is a ring)
\[= 1 - ba + bca - bcaba\]
(by distributivity)
\[= 1 + (-b)(a - ca + caba)\]
(by distributivity)
\[= 1 + (-b)(1 - c + cab)a\]
(by distributivity)
\[= 1 + (-b)(1 - c(1 - ab))a\]
(by distributivity)
\[= 1 + (-b)(1 - 1)a\]
(since $c(1 - ab) = 1$)
\[= 1 + (-b)(0)a\]
(since -1 is the additive inverse of 1)
\[= 1 + 0\]
(since zero annihilates)
\[= 1.\]
(since zero is the neutral element of addition)

In other words, $1 + bca$ is a left inverse of $1 - ba$. This solves part (a).

(b) Assume that c is a right inverse of $1 - ab$. That is, $(1 - ab)c = 1$. It follows that:

\[(1 - ba)(1 + bca)\]
\[= (1 + bca) - ba(1 + bca)\]
(by distributivity)
\[= 1 + bca - ba - babca\]
(by distributivity)
\[= 1 + b(ca - a - abca)\]
(by distributivity)
\[= 1 + b(c - 1 - abc)a\]
(by distributivity)
\[= 1 + b(c - abc - 1)a\]
(by commutativity of addition, since \mathbb{K} is a ring)
\[= 1 + b((1 - ab)c - 1)a\]
(by distributivity)
\[= 1 + b(1 - 1)a\]
(since $(1 - ab)c = 1$)
\[= 1 + b(0)a\]
(since -1 is the additive inverse of 1)
\[= 1 + 0\]
(since zero annihilates)
\[= 1.\]
(since zero is the neutral element of addition)

In other words, $1 + bca$ is a right inverse of $1 - ba$. This solves part (b).

(c) Assume that c is an inverse of $1 - ab$. In other words, $c(1 - ab) = 1$ and $(1 - ab)c = 1$. Hence, c is a left inverse of $1 - ab$ and c is a right inverse of $1 - ab$. Therefore, parts (a) and (b) imply that $1 + bca$ is a left inverse of $1 - ba$ and $1 + bca$ is a right inverse of $1 - ba$. In other words,

\[(1 + bca)(1 - ba) = 1 = (1 - ba)(1 + bca).\]

Therefore, by the definition of an inverse, $1 + bca$ is an inverse of $1 - ba$. This solves part (c).

1 Here and in the following, when we refer to “distributivity”, we mean distributivity laws in the wide sense of this word. This includes identities like $u(x + y + z) = ux + uy + uz$ and $u(x - y + z) = ux - uy + uz$. All of these identities can easily be proven from the ring axioms and the definition of subtraction.
EXERCISE 4: COMPOSITION OF RING HOMOMORPHISMS

Problem

Let K, L and M be three rings. Prove the following:

(a) If $f : K \to L$ and $g : L \to M$ are two ring homomorphisms, then $g \circ f : K \to M$ is a ring homomorphism.

(b) If $f : K \to L$ and $g : L \to M$ are two isomorphisms, then $g \circ f : K \to M$ is a ring isomorphism.

Solution

(a) Let $f : K \to L$ and $g : L \to M$ be two ring homomorphisms.

In order to prove that $g \circ f : K \to M$ is a ring homomorphism, we must prove four things:

(i) $(g \circ f)(a + b) = (g \circ f)(a) + (g \circ f)(b)$ for all $a, b \in K$.

(ii) $(g \circ f)(0_K) = 0_M$.

(iii) $(g \circ f)(ab) = (g \circ f)(a) \cdot (g \circ f)(b)$ for all $a, b \in K$.

(iv) $(g \circ f)(1_K) = 1_M$.

We begin by proving (i). Fix arbitrary $a \in K$ and $b \in K$. Thus, we have

$$f(a + b) = f(a) + f(b),$$

since f is a ring homomorphism. Now, let us apply g to both sides, yielding:

$$g(f(a + b)) = g(f(a) + f(b)).$$

The left hand side of (1) is clearly equal to $(g \circ f)(a + b)$ by the definition of $g \circ f$. Since g is a ring homomorphism, we obtain:

$$g(f(a) + f(b)) = g(f(a)) + g(f(b)) = (g \circ f)(a) + (g \circ f)(b)$$

(by the definition of $g \circ f$). Hence, (1) rewrites as $(g \circ f)(a + b) = (g \circ f)(a) + (g \circ f)(b)$. Thus, (i) is proven. The proof of (iii) is similar.

To see that (ii) is true, observe that $f(0_K) = 0_L$ (since f is a ring homomorphism) and $g(0_L) = 0_M$ (likewise). Hence, $(g \circ f)(0_K) = g(f(0_K)) = g(0_L) = 0_M$. This proves (ii).

The proof of (iv) is similar.

Together, (i), (ii), (iii), and (iv) imply that $g \circ f : K \to M$ is a ring homomorphism. This solves part (a).

(b) Let $f : K \to L$ and $g : L \to M$ be two isomorphisms.

Thus, f and g are invertible, and f, g, f^{-1}, and g^{-1} are ring homomorphisms.

From the fact that f and g are ring homomorphisms, we conclude using part (a) of this exercise that $g \circ f : K \to M$ is a ring homomorphism.

As well, from the fact that f and g are invertible, we obtain that $g \circ f$ is invertible by well known properties of functions.
From the fact that \(g^{-1} \) and \(f^{-1} \) are ring homomorphisms, we conclude using part (a) of the exercise (applied to \(M, K, g^{-1} \) and \(f^{-1} \) instead of \(K, M, f \) and \(g \)) that \(f^{-1} \circ g^{-1} : M \to K \) is a ring homomorphism. In other words, \((g \circ f)^{-1}\) is a ring homomorphism (since \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\)). Thus, \(g \circ f \) is an invertible ring homomorphism whose inverse \((g \circ f)^{-1}\) is a ring homomorphism as well. In other words, \(g \circ f \) is a ring isomorphism. This proves part (b).

EXERCISE 6: THE CHARACTERISTIC OF A FIELD

Problem

Let \(\mathbb{F} \) be a field. Recall that we have defined \(na \) to mean \(a + a + \cdots + a \) whenever \(n \in \mathbb{N} \) and \(a \in \mathbb{F} \).

Assume that there exists a positive integer \(n \) such that \(n \cdot 1_{\mathbb{F}} = 0 \). Let \(p \) be the \textit{smallest} such \(n \).

Prove that \(p \) is prime.

\[\text{Hint:} \quad (a \cdot 1_{\mathbb{F}}) \cdot (b \cdot 1_{\mathbb{F}}) = ab \cdot 1_{\mathbb{F}} \text{ for all } a, b \in \mathbb{N}. \]

Remark

The \(p \) we just defined is called the \textit{characteristic} of the field \(\mathbb{F} \) when it exists. (Otherwise, the characteristic of the field \(\mathbb{F} \) is defined to be 0.)

Thus, for each prime \(p \), the finite field \(\mathbb{Z}/p \), as well as the finite field of size \(p^2 \) that we constructed in class, have characteristic \(p \).

Solution

In our definition of fields, we have required a field \(\mathbb{K} \) to satisfy \(0_{\mathbb{K}} \neq 1_{\mathbb{K}} \). Thus, \(0_{\mathbb{F}} \neq 1_{\mathbb{F}} \) (since \(\mathbb{F} \) is a field).

We have assumed that there exists a positive integer \(n \) such that \(n \cdot 1_{\mathbb{F}} = 0 \). Hence, by the well ordering property, the minimum

\[
\min \{ n \in \mathbb{Z}^+ : n \cdot 1_{\mathbb{F}} = 0 \}
\]

exists

(where \(\mathbb{Z}^+ \) denotes the set \{1, 2, 3, \ldots\}). Let \(m \) be this minimum. In other words, \(m := \min \{ n \in \mathbb{Z}^+ : n \cdot 1_{\mathbb{F}} = 0 \} \). Then, \(m \cdot 1_{\mathbb{F}} = 0 = 0_{\mathbb{F}} \neq 1_{\mathbb{F}} = 1 \cdot 1_{\mathbb{F}} \), so that \(m \neq 1 \). Therefore, \(m > 1 \) (since \(m \in \mathbb{Z}^+ \)).

Of course, our \(m \) is exactly the number that was denoted by \(p \) in the exercise. Hence, we need to prove that \(m \) is prime.

Suppose that \(m = ab \) for some \(a, b \in \{1, 2, \ldots, m - 1\} \). We shall derive a contradiction. We have

\[
(a \cdot 1_{\mathbb{F}}) \cdot (b \cdot 1_{\mathbb{F}}) = a (1_{\mathbb{F}} \cdot (b \cdot 1_{\mathbb{F}})) = a (b \cdot 1_{\mathbb{F}}) = \underbrace{ab \cdot 1_{\mathbb{F}}}_{=m} = m \cdot 1_{\mathbb{F}} = 0.
\]
This implies that either \(a \cdot 1_F = 0 \) or \(b \cdot 1_F = 0 \). Assume WLOG that \(a \cdot 1_F = 0 \). Thus, \(a \in \{n \in \mathbb{Z}^+ : n \cdot 1_F = 0\} \). However, \(a < m \) (since \(a \in \{1, 2, \ldots, m - 1\} \)), so this contradicts the fact that \(m = \min \{n \in \mathbb{Z}^+ : n \cdot 1_F = 0\} \). This contradiction shows that there do not exist \(a, b \in \{1, 2, \ldots, m - 1\} \) such that \(m = ab \). Hence, the only positive divisors of \(m \) are 1 and \(m \) (since any other positive divisor of \(m \) would be some \(a \in \{1, 2, \ldots, m - 1\} \), and the corresponding “complementary” divisor \(b := m/a \) would also belong to the set \(\{1, 2, \ldots, m - 1\} \), which would yield that \(a \) and \(b \) are two elements of \(\{1, 2, \ldots, m - 1\} \) satisfying \(m = ab \)). Hence, \(m \) is prime (since \(m > 1 \)). This is precisely what we wanted to prove, only that we called it \(m \) rather than \(p \). This solves the exercise.

\[^2\text{Why? Recall that } F \text{ is a field. Thus, every nonzero element of } F \text{ is invertible. Having } (a \cdot 1_F) \cdot (b \cdot 1_F) = 0, \text{ let us suppose that } a \cdot 1_F \text{ and } b \cdot 1_F \text{ are both nonzero. Hence, they are both invertible, since } F \text{ is a field. Hence, the following computation is valid:}
\]

\[
(b \cdot 1_F)^{-1} \cdot (a \cdot 1_F)^{-1} \cdot (a \cdot 1_F) \cdot (b \cdot 1_F) = (b \cdot 1_F)^{-1} \cdot (a \cdot 1_F)^{-1} \cdot 0,
\]

which clearly simplifies to \(1_F = 0_F \), which contradicts \(0_F \neq 1_F \). This contradiction shows that our assumption was false. In other words, \((a \cdot 1_F) \) and \((b \cdot 1_F) \) are not both not equal to zero. In other words, either \(a \cdot 1_F = 0 \) or \(b \cdot 1_F = 0 \).