Let me first recall a definition.

Definition 0.1. Let V and W be two vector spaces. Let $v = (v_1, v_2, \ldots, v_m)$ be a basis of V. Let $w = (w_1, w_2, \ldots, w_n)$ be a basis of W. Let $L : V \rightarrow W$ be a linear map.

The *matrix representing* L with respect to v and w is the $n \times m$-matrix $M_{v,w,L}$ defined as follows: For every $j \in \{1, 2, \ldots, m\}$, expand the vector $L(v_j)$ with respect to the basis w, say, as follows:

$$L(v_j) = \alpha_{1,j}w_1 + \alpha_{2,j}w_2 + \cdots + \alpha_{n,j}w_n. \quad (1)$$

Then, $M_{v,w,L}$ is the $n \times m$-matrix whose (i, j)-th entry is $\alpha_{i,j}$.

For example, if $n = 3$ and $m = 2$, then

$$M_{v,w,L} = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2} \\ \alpha_{3,1} & \alpha_{3,2} \end{pmatrix},$$

where

$$L(v_1) = \alpha_{1,1}w_1 + \alpha_{2,1}w_2 + \alpha_{3,1}w_3;$$

$$L(v_2) = \alpha_{1,2}w_1 + \alpha_{2,2}w_2 + \alpha_{3,2}w_3.$$

The purpose of this matrix $M_{v,w,L}$ is to allow easily expanding $L(v)$ in the basis (w_1, w_2, \ldots, w_n) of W if v is a vector in V whose expansion in the basis (v_1, v_2, \ldots, v_m) of V is known. For instance, if v is one of the basis vectors v_j, then the expansion of $L(v_j)$ can be simply read off from the j-th column of $M_{v,w,L}$; otherwise, it is an appropriate linear combination:

$$L(\lambda_1v_1 + \lambda_2v_2 + \cdots + \lambda_mv_m) = \lambda_1L(v_1) + \lambda_2L(v_2) + \cdots + \lambda_mL(v_m)$$

(where the $L(v_j)$ can be computed by (1)).

You can abbreviate $M_{v,w,L}$ as M_L, but it’s your job to ensure that you know what v and w are (and they aren’t changing midway through your work).

Example 0.2. Let A be the 2×2-matrix $\begin{pmatrix} 5 & 7 \\ -2 & 9 \end{pmatrix}$. Let $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear map L_A. (Recall that this is the map $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ that sends every vector $v \in \mathbb{R}^2$ to Av.)
Consider the following basis \(v = (v_1, v_2) \) of the vector space \(\mathbb{R}^2 \):

\[
v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.
\]

Consider the following basis \(w = (w_1, w_2) \) of the vector space \(\mathbb{R}^2 \):

\[
w_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.
\]

What is the matrix \(M_{v,w,L} \) representing \(L \) with respect to these two bases \(v \) and \(w \)?

First, let me notice that it is not \(A \) (or at least it doesn’t have to be \(A \) a priori), because our two bases \(v \) and \(w \) are not the standard basis of \(\mathbb{R}^2 \). Only if we pick both \(v \) and \(w \) to be the standard bases of the respective spaces we can guarantee that \(M_{v,w,L} \) will be \(A \).

Without having this shortcut, we must resort to the definition of \(M_{v,w,L} \). It tells us to expand \(L(v_1) \) and \(L(v_2) \) in the basis \(w \) of \(\mathbb{R}^2 \), and to place the resulting coefficients in a \(2 \times 2 \)-matrix. Let’s do this. We begin with \(L(v_1) \):

\[
L(v_1) = L_A(v_1) = Av_1 = \begin{pmatrix} 5 & 7 \\ -2 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -11 \end{pmatrix}.
\]

How do we expand this in the basis \(w \)? This is a typical exercise in Gaussian elimination (we just need to solve the equation \(L(v_1) = \lambda_1 w_1 + \lambda_2 w_2 \) in the two unknowns \(\lambda_1 \) and \(\lambda_2 \), and the result is

\[
L(v_1) = \frac{7}{3} w_1 + \frac{-20}{3} w_2.
\]

Similarly, we take care of \(L(v_2) \), obtaining

\[
L(v_2) = 13w_1 + 5w_2.
\]

Thus, the required matrix is

\[
M_{v,w,L} = \begin{pmatrix} 7 & 13 \\ \frac{3}{3} & \frac{-20}{3} \\ \frac{-20}{3} & 5 \end{pmatrix}.
\]

Exercise 1. Let \(A \) be the \(3 \times 2 \)-matrix \(\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} \). Let \(L : \mathbb{R}^3 \to \mathbb{R}^2 \) be the linear map \(L_A \). (Recall that this is the map \(\mathbb{R}^3 \to \mathbb{R}^2 \) that sends every vector \(\mathbf{v} \in \mathbb{R}^3 \) to \(Av \).)
Consider the following basis \(v = (v_1, v_2, v_3) \) of the vector space \(\mathbb{R}^3 \):

\[
\begin{align*}
v_1 &= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \\
v_2 &= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \\
v_3 &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\end{align*}
\]

Consider the following basis \(w = (w_1, w_2) \) of the vector space \(\mathbb{R}^2 \):

\[
\begin{align*}
w_1 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\
w_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\end{align*}
\]

(a) Find the matrix \(M_{v,w,L} \) representing \(L \) with respect to these two bases \(v \) and \(w \). \([15 \text{ points}]\)

(b) Let \(v' \) be the basis \((v_3, v_2, v_1) \) of \(\mathbb{R}^3 \). Let \(w' \) be the basis \((w_2, w_1) \) of \(\mathbb{R}^2 \). Find the matrix \(M_{v',w',L} \). \([5 \text{ points}]\)

For every \(n \in \mathbb{N} \), we let \(P_n \) denote the vector space of all polynomial functions (with real coefficients) of degree \(\leq n \) in one variable \(x \). This vector space has dimension \(n + 1 \), and its simplest basis is \((1, x, x^2, \ldots, x^n) \). We call this basis the **monomial basis** of \(P_n \).

If \(f \) is a polynomial in one variable \(x \), then I shall use the notation \(f[y] \) for “substitute \(y \) for \(x \) into \(f \)”. (For example, if \(f = x^3 + 7x + 2 \), then \(f[5] = 5^3 + 7 \cdot 5 + 2 = 162 \).) This would normally be denoted by \(f(y) \), but this is somewhat ambiguous, since the notation \(x(x + 1) \) could then stand for two different things (namely, “substitute \(x + 1 \) into the polynomial function \(x^n \)” or “multiply \(x \) by \(x + 1 \)”), whereas the notation \(f[y] \) removes this ambiguity.

Example 0.3.

(a) Define a map \(S_a : P_2 \to \mathbb{R} \) by \(S_a(f) = f[2] + f[3] \). Then, \(S_a \) is linear, because:

1. If \(f \) and \(g \) are two elements of \(P_2 \), then

\[
S_a(f + g) = (f + g)[2] + (f + g)[3] = (f[2] + g[2]) + (f[3] + g[3])
\]

\[
= S_a(f) + S_a(g).
\]

2. If \(f \in P_2 \) and \(\lambda \in \mathbb{R} \), then

\[
S_a(\lambda f) = (\lambda f)[2] = \lambda f[2] = \lambda S_a(f).
\]

Let \(v \) be the monomial basis \((1, x, x^2) \) of \(P_2 \), and let \(w \) be the one-element basis \((1) \) of \(\mathbb{R} \). What is the matrix \(M_{v,w,S_a} \)?
Again, follow the definition of M_{v,w,S_a}. It tells us to expand $S_a(1)$, $S_a(x)$ and $S_a(x^2)$ in the basis w of \mathbb{R}, and to place the resulting coefficients in a 1×3-matrix. Expanding things in the basis w is particularly simple, since w is a one-element list; specifically, we obtain the expansions

\[
S_a(1) = 1 \begin{bmatrix} 2 \\ =1 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ =1 \end{bmatrix} = 1 + 1 = 2 = 2 \cdot 1;
\]
\[
S_a(x) = x \begin{bmatrix} 2 \\ =2 \end{bmatrix} + x \begin{bmatrix} 3 \\ =3 \end{bmatrix} = 2 + 3 = 5 = 5 \cdot 1;
\]
\[
S_a(x^2) = x^2 \begin{bmatrix} 2 \\ =2^2 \end{bmatrix} + x^2 \begin{bmatrix} 3 \\ =3^2 \end{bmatrix} = 2^2 + 3^2 = 13 = 13 \cdot 1.
\]

Thus, the required matrix is

\[
M_{v,w,S_a} = \begin{pmatrix} 2 & 5 & 13 \end{pmatrix}.
\]

(b) Define a map $S_b : P_2 \to P_4$ by $S_b(f) = f[x^2]$. (Notice that we chose P_4 as the target space, because substituting x^2 for x will double the degree of a polynomial.) The map S_b is linear (for reasons that are similar to the ones that convinced us that S_a is linear).

Let v be the monomial basis $(1, x, x^2)$ of P_2, and let w be the monomial basis $(1, x, x^2, x^3, x^4)$ of P_4. What is the matrix M_{v,w,S_b}?

Again, follow the definition of M_{v,w,S_b}. It tells us to expand $S_b(1)$, $S_b(x)$ and $S_b(x^2)$ in the basis w of P_4, and to place the resulting coefficients in a 5×3-matrix. The expansions are as follows:

\[
S_b(1) = 1 \begin{bmatrix} x^2 \\ =1 \end{bmatrix} = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 + 0 \cdot x^3 + 0 \cdot x^4;
\]
\[
S_b(x) = x \begin{bmatrix} x^2 \\ =1 \end{bmatrix} = x^2 = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^2 + 0 \cdot x^3 + 0 \cdot x^4;
\]
\[
S_b(x^2) = x^2 \begin{bmatrix} x^2 \\ =1 \end{bmatrix} = (x^2)^2 = x^4 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2 + 0 \cdot x^3 + 1 \cdot x^4.
\]

Thus, the required matrix is

\[
M_{v,w,S_b} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

Exercise 2. Which of the following maps are linear? For every one that is, represent it as a matrix with respect to the monomial bases of its domain and its
target. [6 points for each part, split into 2+4 if the map is linear]

(a) The map $T_a : P_2 \to P_2$ given by $T_a(f) = f[x+1]$. (Thus, T_a is the map that substitutes $x+1$ for x into f. Thus, $T_a(x^n) = (x+1)^n$ for every $n \in \{0, 1, 2\}$.)

(b) The map $T_b : P_2 \to P_3$ given by $T_b(f) = xf[x]$. (Notice that $f[x]$ is the same as f, because substituting x for x changes nothing. I am just writing $f[x]$ to stress that f is a function of x.)

(c) The map $T_c : P_2 \to P_4$ given by $T_c(f) = f[1]f[x]$.

(d) The map $T_d : P_2 \to P_4$ given by $T_d(f) = f[x^2 + 1]$.

(e) The map $T_e : P_2 \to P_2$ given by $T_e(f) = x^2f\left[\frac{1}{x}\right]$.

(g) The map $T_g : P_3 \to P_3$ given by $T_g(f) = xf'[x]$.

[There is no part (f) because I want to avoid calling a map “T_f” while the letter f stands for a polynomial.]

[Note: Proofs are not required.]

See the beginning of §3.21 of [my notes](link), the [Wikipedia](link) or various other sources, for examples of injective, surjective and bijective maps.

Exercise 3.

(a) Which of the six maps in Exercise 2 are injective? [2 points per map]

(b) Which of them are surjective? [2 points per map]

[Note: Proofs are not required.]