Exercise 1. Recall that we defined the multiplication of complex numbers by the rule
\[(a_1, b_1) (a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1).\]

(a) Prove that this multiplication is associative: i.e., that \(z_1 (z_2 z_3) = (z_1 z_2) z_3\) for every three complex numbers \(z_1, z_2, z_3\). (Begin by writing \(z_1\) in the form \((a_1, b_1)\), etc.) \([5\, \text{points}]\)

(b) For any complex number \(z = (a, b) = a + bi\), define a real matrix \(W_z\) by
\[W_z = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.\]

Given two complex numbers \(z_1\) and \(z_2\), prove that \(W_{z_1 z_2} = W_{z_1} W_{z_2}\). \([5\, \text{points}]\)

Here is the algorithm for diagonalizing a matrix we did in class:

Algorithm 0.1. Let \(A \in \mathbb{C}^{n \times n}\) be an \(n \times n\)-matrix. We want to diagonalize \(A\); that is, we want to find an invertible \(n \times n\)-matrix \(S\) and a diagonal \(n \times n\)-matrix \(\Lambda\) such that \(A = S \Lambda S^{-1}\). We proceed as follows:

Step 1: We compute the polynomial det \((A - xI_n)\) (where \(x\) is the indeterminate). (This polynomial, or the closely related polynomial det \((xI_n - A)\), is often called the characteristic polynomial of \(A\).)

Step 2: We find the roots of this polynomial det \((A - xI_n)\). Let \(\lambda_1, \lambda_2, \ldots, \lambda_k\) be these roots **without repetitions** (e.g., multiple roots are not listed multiple times), in whatever order you like. For example, if det \((A - xI_n) = (x - 1)^2 (x - 2)\), then you can set \(k = 2\), \(\lambda_1 = 1\) and \(\lambda_2 = 2\), or you can set \(k = 2\), \(\lambda_1 = 2\) and \(\lambda_2 = 1\), but you must not set \(k = 3\).

Step 3: For each \(j \in \{1, 2, \ldots, k\}\), we find a basis for \(\text{Ker} (A - \lambda_j I_n)\). (Notice that \(\text{Ker} (A - \lambda_j I_n) \neq \{0\}\) (because \(\lambda_j\) is a root of det \((A - \lambda_j I_n)\), and thus det \((A - \lambda_j I_n) = 0\); hence, the basis should consist of at least one vector.)

Step 4: Concatenate these bases into one big list \((s_1, s_2, \ldots, s_m)\) of vectors. If \(m < n\), then the matrix \(A\) **cannot** be diagonalized, and the algorithm stops here. Otherwise, \(m = n\), and we proceed further.

Step 5: Thus, for each \(p \in \{1, 2, \ldots, m\}\), the vector \(s_p\) belongs to a basis of \(\text{Ker} (A - \lambda_j I_n)\) for some \(j \in \{1, 2, \ldots, k\}\). Denote the corresponding \(\lambda_j\) by \(\mu_p\) (so that \(s_p \in \text{Ker} (A - \mu_p I_n)\)). (For example, if \(s_p\) belongs to a basis of \(\text{Ker} (A - 5I_n)\), then \(\mu_p = 5\).) Thus, we have defined \(m\) numbers \(\mu_1, \mu_2, \ldots, \mu_m\).

Step 6: Let \(S\) be the \(n \times n\)-matrix whose columns are \(s_1, s_2, \ldots, s_n\). Let \(\Lambda\) be the diagonal matrix whose diagonal entries (from top-left to bottom-right) are \(\mu_1, \mu_2, \ldots, \mu_n\).
Example 0.2. Let \(A = \begin{pmatrix} 5 & -1 & 5 \\ 2 & 2 & -4 \\ 1 & -1 & 1 \end{pmatrix} \). Let us diagonalize \(A \). We proceed using Algorithm 0.1:

Step 1: We have \(n = 3 \) and thus
\[
\det(A - xI_n) = \det \begin{pmatrix} 5 - x & -1 & 5 \\ 2 & 2 - x & -4 \\ 1 & -1 & 1 - x \end{pmatrix} \\
= (5 - x) (2 - x) (1 - x) + (-1) (-4) 1 + 5 \cdot 2 (-1) \\
- (5 - x) (-4) (-1) - 5 (2 - x) 1 - (-1) 2 (1 - x) \\
= -x^3 + 8x^2 - 10x - 24.
\]

Step 2: Now we must find the roots of this polynomial \(\det(A - xI_n) = -x^3 + 8x^2 - 10x - 24 \).

This is a cubic polynomial, so if it has no rational roots, then finding its roots is quite hopeless (in theory, there is Cardano’s formula, but it is so complicated that it is almost useless). Thus, we hope that there is a rational root. To find it, we use the rational root theorem, which says that any rational root of a polynomial with integer coefficients must have the form \(\frac{p}{q} \) where \(p \) is an integer dividing the constant term and \(q \) is a positive integer dividing the leading coefficient. (This is more general than what I quoted in class, and more correct than what I quoted in Section 070.) In our case, the polynomial \(-x^3 + 8x^2 - 10x - 24\) has leading coefficient \(-1\) and constant term \(-24\). Thus, any rational root must have the form \(\frac{p}{q} \) where \(p \) is an integer dividing \(-24\) and \(q \) is a positive integer dividing \(1 \). This leaves 16 possibilities for \(p \) (namely, \(p \in \{1, 2, 3, 4, 6, 8, 12, 24, -1, -2, -3, -4, -6, -8, -12, -24\} \)) and 1 possibility for \(q \) (namely, \(q = 1 \)). Trying out all of these possibilities, we find that \(p = 4 \) and \(q = 1 \) works. Thus, \(\frac{p}{q} = \frac{4}{1} = 4 \) is a root.

Hence, we have found one root of our polynomial: namely, \(x = 4 \). In order to find the others, we divide the polynomial by \(x - 4 \) (using polynomial long division). We get
\[
\frac{-x^3 + 8x^2 - 10x - 24}{x - 4} = -x^2 + 4x + 6.
\]

It thus remains to find the roots of \(-x^2 + 4x + 6\). This is a quadratic, so we know how to do this. The roots are \(2 + \sqrt{10} \) and \(2 - \sqrt{10} \).
Thus, altogether, the three roots of $\det(A - xI_n)$ are 4, $2 + \sqrt{10}$ and $2 - \sqrt{10}$. Let me number them $\lambda_1 = 4$, $\lambda_2 = 2 + \sqrt{10}$ and $\lambda_3 = 2 - \sqrt{10}$ (although you can use any numbering you wish).

Step 3: Now, we must find a basis of $\ker(A - \lambda_j I_n)$ for each $j \in \{1, 2, 3\}$. This is a straightforward exercise in Gaussian elimination, and the only complication is that you have to know how to rationalize a denominator (because λ_2 and λ_3 involve square roots). Let me only show the computation for $j = 2$:

Computing $\ker(A - \lambda_2 I_n)$: We have

$$\ker(A - \lambda_2 I_n) = \ker \left(A - \left(2 + \sqrt{10} \right) I_n \right)$$

$$= \ker \begin{pmatrix} 3 - \sqrt{10} & -1 & 5 \\ 2 & -\sqrt{10} & -4 \\ 1 & -1 & -1 - \sqrt{10} \end{pmatrix}.$$

This is the set of all solutions to the system

$$\begin{cases} (3 - \sqrt{10}) x + (-1) y + 5z = 0; \\ 2x + (-\sqrt{10}) y + (-4) z = 0; \\ 1x + (-1) y + (-1 - \sqrt{10}) z = 0. \end{cases} \quad (1)$$

So let us solve this system. We divide the first equation by $3 - \sqrt{10}$ (in order to have a simpler pivot entry). This is tantamount to multiplying it by $\frac{1}{3 - \sqrt{10}} = -3 - \sqrt{10}$ (this was obtained by rationalizing the denominator, and it is absolutely useful here: you don’t want to carry nested fractions around!). It then becomes $x + \left(3 + \sqrt{10} \right) y + \left(-15 - 5\sqrt{10} \right) z = 0$, and the whole system transforms into

$$\begin{cases} x + \left(3 + \sqrt{10} \right) y + \left(-15 - 5\sqrt{10} \right) z = 0; \\ 2x + (-\sqrt{10}) y + (-4) z = 0; \\ 1x + (-1) y + (-1 - \sqrt{10}) z = 0. \end{cases}$$

Now, subtracting appropriate multiples of the first row from the other two rows, we eliminate x, resulting in the following system:

$$\begin{cases} 1x + \left(3 + \sqrt{10} \right) y + \left(-15 - 5\sqrt{10} \right) z = 0; \\ -6 - 3\sqrt{10} \ y + \left(26 + 10\sqrt{10} \right) z = 0; \\ -4 - \sqrt{10} \ y + \left(14 + 4\sqrt{10} \right) z = 0. \end{cases}$$
Next, we divide the second equation by \(-6 - 3\sqrt{10}\) (aka, multiply it by \(\frac{1}{-6 - 3\sqrt{10}} = \frac{1}{9} - \frac{1}{18\sqrt{10}}\)), so that it becomes \(y + \left(\frac{-1}{3}\sqrt{10} - \frac{8}{3}\right)z = 0\). Then, subtracting an appropriate multiple of it from the third equation turns the third equation into \(0 = 0\). Thus, our system takes the form

\[
\begin{cases}
x + \left(3 + \sqrt{10}\right)y + \left(-15 - 5\sqrt{10}\right)z = 0; \\
y + \left(-\frac{1}{3}\sqrt{10} - \frac{8}{3}\right)z = 0; \\
0 = 0
\end{cases}
\]

In this form, it can be solved by back-substitution (unsurprisingly, there is a free variable, because the kernel is nonzero). The solutions have the form

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
\left(\frac{4}{3}\sqrt{10} + \frac{11}{3}\right)r \\
\left(\frac{1}{3}\sqrt{10} + \frac{8}{3}\right)r \\
r
\end{pmatrix}.
\]

Thus,

\[
\text{Ker} \left(A - \lambda_2 I_n\right) = \text{span} \begin{pmatrix}
\left(\frac{4}{3}\sqrt{10} + \frac{11}{3}\right) \\
\left(\frac{1}{3}\sqrt{10} + \frac{8}{3}\right) \\
1
\end{pmatrix}.
\]

Hence, \(\begin{pmatrix}
\left(\frac{4}{3}\sqrt{10} + \frac{11}{3}\right) \\
\left(\frac{1}{3}\sqrt{10} + \frac{8}{3}\right) \\
1
\end{pmatrix}\) is a basis of \(\text{Ker} \left(A - \lambda_2 I_n\right)\). (Of course, you can scale the vector by 3 in order to get rid of the denominators.)

Similarly, we can find a basis of \(\text{Ker} \left(A - \lambda_1 I_n\right)\) (for example, \(\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}\)), and a basis of \(\text{Ker} \left(A - \lambda_3 I_n\right)\) (for example, \(\begin{pmatrix}
-\frac{4}{3}\sqrt{10} + \frac{11}{3} \\
-\frac{1}{3}\sqrt{10} + \frac{8}{3} \\
1
\end{pmatrix}\)).

Step 4: Now, we concatenate these three bases into one big list \(\left(s_1, s_2, \ldots, s_m\right)\).
of vectors. So this big list is
\[
(s_1, s_2, s_3) = \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}, \begin{pmatrix}
4 \\
3 \\
1
\end{pmatrix} \frac{\sqrt{10}}{3} + \begin{pmatrix}
11 \\
3 \\
8 \\
3
\end{pmatrix}, \begin{pmatrix}
-4 \\
3 \\
1
\end{pmatrix} \frac{\sqrt{10}}{3} + \begin{pmatrix}
11 \\
3 \\
8 \\
3
\end{pmatrix}.
\]

Thus, \(m = 3 \), so that \(m = n \), and thus \(A \) can be diagonalized.

Step 5: Since \(s_1 \) belongs to a basis of \(\text{Ker}(A - \lambda_1 I_n) \), we have \(\mu_1 = \lambda_1 = 4 \). Similarly, \(\mu_2 = \lambda_2 = 2 + \sqrt{10} \) and \(\mu_3 = \lambda_3 = 2 - \sqrt{10} \).

Step 6: Now, \(S \) is the \(n \times n \)-matrix whose columns are \(s_1, s_2, \ldots, s_n \). In other words,
\[
S = \begin{pmatrix}
1 & 4 \\
1 & 3 \\
0 & 1
\end{pmatrix} \frac{\sqrt{10}}{3} + \begin{pmatrix}
11 \\
8 \\
3
\end{pmatrix}, \begin{pmatrix}
-4 \\
1
\end{pmatrix} \frac{\sqrt{10}}{3} + \begin{pmatrix}
11 \\
8 \\
3
\end{pmatrix}.
\]

Furthermore, \(\Lambda \) is the diagonal matrix whose diagonal entries (from top-left to bottom-right) are \(\mu_1, \mu_2, \ldots, \mu_n \). In other words,
\[
\Lambda = \begin{pmatrix}
4 & 0 & 0 \\
0 & 2 + \sqrt{10} & 0 \\
0 & 0 & 2 - \sqrt{10}
\end{pmatrix}.
\]

These are the \(S \) and \(\Lambda \) we were seeking. With some patience, you could check that \(A = S \Lambda S^{-1} \) (although it’s not necessary to check it).

Remark 0.3.
(a) Algorithm [0.1] relies on some nontrivial theorems (for example, Lemma 8.13 in Olver/Shakiban). See §8.3 of Olver/Shakiban for a complete treatment. (Chapter 7 of Lankham/Nachtergaele/Schilling comes close, whereas Chapter Five.IV of Hefferon is probably overkill.)

(b) What can we do if \(A \) is not diagonalizable? The next best thing is the Jordan normal form (or Jordan canonical form); see §8.6 of Olver/Shakiban.

(c) In Step 4 of Algorithm [0.1] we may sometimes notice that \(A \) is not diagonalizable (since \(m < n \)). Is there a way to notice this earlier, thus saving ourself some useless work?

Yes. For each \(j \in \{1, 2, \ldots, k\} \), let \(\alpha_j \) be the multiplicity of the root \(\lambda_j \) of the polynomial \(\det(A - xI_n) \). (For example, if \(\det(A - xI_n) = (x - 6)^3 (x + 2) \) and \(\lambda_1 = 6 \), then \(\alpha_1 = 3 \), because the root \(\lambda_1 = 6 \) has multiplicity 3.) In Step 3, when
computing $\text{Ker} (A - \lambda_j I_n)$, the dimension $\dim (\text{Ker} (A - \lambda_j I_n))$ will be either $= \alpha_j$ or $< \alpha_j$. If it is $< \alpha_j$, then the algorithm is doomed to failure (i.e., you will get $m < n$ in Step 4), and A is not diagonalizable. This can save you some work.

(d) Algorithm 0.1 is more of a theoretical result than an actual workable algorithm; the difficulty of finding exact roots of polynomials, and the instability of Gaussian elimination for non-exact matrices, makes it rather useless. However, for 2×2-matrices it works fine (you can solve quadratics), and it also works nicely for various kinds of "matrices of nice forms" (e.g., you can diagonalize

$$
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
2 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \vdots \\
n & n & \cdots & n
\end{pmatrix}
$$

for each n; try it). Practical algorithms for numerical computation are a completely different story. §10.6 of Olver/Shakiban tells the beginnings of the story (namely, how to find eigenvalues, and get something close to diagonalization). Similar to Gaussian elimination, it is wrong to expect diagonalization to work with approximate matrices, because S and Λ can "jump wildly" when A is changed only a little bit; however, certain things can be done that come close to diagonalization.

(e) There is a theorem (called the spectral theorem) saying that if A is a symmetric matrix with real entries, then A is always diagonalizable over the reals (i.e., we can find S and Λ with real entries), and moreover you can find an S that is orthogonal (i.e., the columns of S are orthonormal). This is a hugely important fact in applications (it is related to the SVD, among many other things), but we will not have the time for it in class. Let me just mention that finding an orthogonal S requires only a simple fix to Algorithm 0.1: In Step 3, you have to choose an orthonormal basis of $\text{Ker} (A - \lambda_j I_n)$ (not just some basis). Then, in Step 4, the big list (s_1, s_2, \ldots, s_m) will automatically be an orthonormal basis of \mathbb{R}^n. This is one of the miracles of symmetric matrices. See §8.4 in Olver/Shakiban for a proof and more details.

Exercise 2. (a) Diagonalize $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. [5 points]
(b) Diagonalize $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. [5 points]
(c) Diagonalize $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. [10 points]

Exercise 3. Define a sequence (g_0, g_1, g_2, \ldots) of integers by

$$
g_0 = 0, \quad g_1 = 1, \quad g_{n+1} = 3g_n + g_{n-1} \quad \text{for all } n \geq 1.
$$
This is similar to the Fibonacci sequence. Here is a partial table of values:

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_k</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>33</td>
<td>109</td>
<td>360</td>
<td>1189</td>
<td>3927</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) What are g_9 and g_{10}? [2 points]

(b) Define a 2×2-matrix A by $A = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$. Find A^2 and A^3. [2 points]

(c) Prove that

$$A^n = \begin{pmatrix} g_{n+1} & g_n \\ g_n & g_{n-1} \end{pmatrix}$$

(2)

for all $n \geq 1$. The proof (or at least the easiest proof) is by induction over n: In the induction base, you should check that (2) holds for $n = 1$. In the induction step, you assume that (2) holds for $n = m$ for a given positive integer m, and then you have to check that (2) also holds for $n = m + 1$. (Use the fact that $A^{m+1} = AA^m = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} A^m$.) [10 points]

(d) Diagonalize A. [10 points]

(e) Use this to obtain an explicit formula for g_n. (The formula will involve square roots and n-th powers of numbers, but no recursion and no matrices.) [10 points]

Exercise 4. Let A be an $n \times n$-matrix. Assume that A can be diagonalized, with $A = S \Lambda S^{-1}$ for an invertible $n \times n$-matrix S and a diagonal $n \times n$-matrix Λ.

(a) Diagonalize A^2. [5 points]

(b) Diagonalize A^{-1}, if A is invertible. (You can use the fact that for an invertible A, the diagonal entries of Λ are nonzero, and so Λ^{-1} is a diagonal matrix again.) [5 points]

(c) Diagonalize A^T (the transpose of A). [10 points]

(The answers should be in terms of S and Λ. For example, $A + I_n$ can be diagonalized as follows: $A + I_n = S (\Lambda + I_n) S^{-1}$. Indeed, S is an invertible matrix, $\Lambda + I_n$ is a diagonal matrix (being the sum of the two diagonal matrices Λ and I_n), and we have

$$S (\Lambda + I_n) S^{-1} = S A S^{-1} = S I_n S^{-1} = A + I_n.$$)