Recall: If \(G \) is a group & \(x \in \%G \), then

either all powers of \(x \) are distinct, and we say \(x \)
has order \(\infty \),
or \(x \) has order \(n \) for some integer \(n \), and
the powers keep repeating themselves with period \(n \),

of \(x \)
while \(1, x, x^2, \ldots, x^{n-1} \) are distinct.

Ex: \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) \) has order \(\infty \);
\(\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \) has order \(6 \).

Prop: 2.4.3. Let \(G \) be a group. Let \(x \in G \) have order \(n < \infty \),

let \(k = nq + r \) be an integer with \(q \in \mathbb{Z} \) and \(r \in \{0, 1, \ldots, n-1\} \).
Then: (a) \(x^k = x^r \) \(\parallel \) (b) \(x^k = 1 \) if & only if \(r = 0 \).
(c) Let \(d = \gcd(k, n) \). Then, the order of \(x^k \) is \(n/d \).
Def. A group G is called **cyclic** if $\exists x \in G$ such that $G = \langle x \rangle$.

Ex: \mathbb{Z}^+ is cyclic: $\mathbb{Z}^+ = \langle 1 \rangle = \langle -1 \rangle$.

Ex: Smallest non-cyclic group:

$$V = \left\{ \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \in \text{GL}_2(\mathbb{R}) \mid \text{\pm's independent} \right\}$$

is a subgroup of $\text{GL}_2(\mathbb{R})$.

Each elt. of V has order 1 or 2, but $|V| = 4$.

V is called Klein's 4-group. (Later: $V \cong (\mathbb{Z}/2) \times (\mathbb{Z}/2)$.)

So V is not cyclic.

§2.5. Homomorphisms

Idea:

<table>
<thead>
<tr>
<th>groups</th>
<th>\leftrightarrow</th>
<th>vector spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>homomorphisms</td>
<td>\leftrightarrow</td>
<td>linear maps</td>
</tr>
<tr>
<td>isomorphisms</td>
<td>\leftrightarrow</td>
<td>invertible linear maps</td>
</tr>
<tr>
<td>subgroups</td>
<td>\leftrightarrow</td>
<td>subspaces</td>
</tr>
</tbody>
</table>
Def. Let G and H be two groups. Let $\varphi : G \rightarrow H$ be a map.

Then, φ is called a **homomorphism** (of groups) if & only if it satisfies

(a) $\varphi(ab) = \varphi(a) \varphi(b)$ \quad \forall a, b \in G;

(b) $\varphi(1_G) = 1_H$;

(c) $\varphi(a^{-1}) = (\varphi(a))^{-1}$ \quad \forall a \in G.

Rmk. Conditions (b) & (c) follow from (a). Why? See Prop. 2.5.3.

Examples:

(a) $\det : GL_n(\mathbb{R}) \rightarrow \mathbb{R}^*$ is a homomorphism.

(b) $\text{sign} : S_n \rightarrow \{\pm 1\}$

(c) $\exp : \mathbb{R}^+ \rightarrow \mathbb{R}^*$ (since $\exp(a+b) = \exp a \cdot \exp b$).

(d) $|\cdot| : \mathbb{C}^* \rightarrow \mathbb{R}^+$ (since $|ab| = |a| \cdot |b|$).

(e) $|\cdot| : \mathbb{C}^+ \rightarrow \mathbb{R}^+$ is not (since $|a+b| \neq |a| + |b|$ in general).

(f) $S_n \rightarrow GL_n$, $\sigma \mapsto (\text{perm. matrix of } \sigma) = (s_{ij})_{1 \leq i, j \leq n}$ is a homomorphism.
(g) Given any group H and any $a \in H$, the map
$$\mathbb{Z}^+ \to H, \quad n \mapsto a^n$$
is a homomorphism.
(because $a^{n+m} = a^n a^m$, $a^{-n} = (a^n)^{-1}$, etc).

(h) Given any groups G & H, the map
$$G \to H, \quad g \mapsto 1_H$$
is a homomorphism, called the trivial homomorphism.

(i) Given a group H & a subgroup G of H, the inclusion map
$$G \to H$$
(that is, $G \to H, \quad g \mapsto g$)
is a homomorphism.

Prop. 2.5.3. (a) In the def. of homomorphisms, axiom (a) implies (b) & (c).

(b) If $\varphi: G \to H$ is a homomorphism, then
$$\varphi(a_1 a_2 \cdots a_k) = \varphi(a_1) \varphi(a_2) \cdots \varphi(a_k) \quad \forall a_1, a_2, \ldots, a_k \in G.$$
Proof. (2) Assume axiom (a) holds. Then

\[\psi(1 \cdot 1) = \psi(1) \psi(1) \]

i.e. \[\psi(1) = \psi(1) \psi(1) \]

i.e. \[1 = \psi(1) \],

Thus axiom (b) holds.

Next, \(\forall a \in G \), we have

\[\psi(a \cdot a^{-1}) = \psi(a) \psi(a^{-1}) \], so \[\psi(a^{-1}) = \psi(a)^{-1} \].

Thus axiom (c) holds. Thus, part (2) follows. \(\square \)

(b) Induction on \(k \).

For any homomorphism \(\psi : G \rightarrow H \), we define two subgroups:

- The image \(\text{Im} \psi = \psi(G) \) of \(\psi \) is the subset \(\{ \psi(g) \mid g \in G \} \) of \(H \). This is a subgroup of \(H \).
(Ex) If G is any group and $a \in H$, then
$\text{Im}(\mathbb{Z}^+ \to H, \ n \mapsto a^n) = \langle a \rangle$.

The kernel $\ker \varphi$ of φ is the subset \{\(g \in G \mid \varphi(g) = 1_{H}\}\} of G. This is a subgroup of G.

(Ex) $\text{Ker}(\det: \text{GL}_n(\mathbb{R}) \to \mathbb{R}^\times) = \text{SL}_n(\mathbb{R})$.

$\text{Ker}(\text{sign: } S_n \to \{\pm 1\}) = \{\text{even permutations in } S_n\}$

$= A_n$ (the "alternating group").

Def. Let H be a subgroup of a group G. Let $a \in G$.

Then, $aH := \{ah \mid h \in H\}$ is called the left H-coset of a in G.

Prop. 2.5.8. Let $\varphi: \text{G} \to \text{H}$ be a homomorphism of groups.

Let $a, b \in G$. Let $K = \ker \varphi$. Then, TFAE:

1. $\varphi(a) = \varphi(b)$.
(2) \(a^{-1}b \in K \).

(3) \(b \in aK \).

(4) \(bK = aK \).

Proof.

(4) \(\Rightarrow \) (2): \(\varphi(a^{-1}b) = \varphi(a^{-1}) \varphi(b) = \varphi(a)^{-1} \varphi(b) = \varphi(b)^{-1} \varphi(b) = 1 \), so \(a^{-1}b \in K \).

(2) \(\Rightarrow \) (3): \(a^{-1}b \in K \) \(\Rightarrow \) \(b = a \cdot a^{-1}b \in aK \).

(3) \(\Rightarrow \) (4): \(b \in aK \) \(\Rightarrow \) \(bK \leq aK K \leq aK \).

(more rigorously: \(b \in aK \), so \(b = al \) for some \(l \in K \).

Now, \(bK = \{bk \mid k \in K \} = \{alk \mid k \in K \} \)

\(= \{al \} \) (since \(K \) is a subgroup)

\(\leq aK \).

But also, \(b = al \) for some \(l \in K \). Thus, \(a = bl^{-1} \in bK \).
Similarly \(aK \subseteq bK \), combined, this gives \(bK = aK \).

(4) \(\Rightarrow \) (1):
\[
\Rightarrow bK = aK \Rightarrow b = a_k \text{ for some } k \in K
\]
\[
\Rightarrow \varphi(b) = \varphi(a_k) = \varphi(a) \varphi(k) = \varphi(a) \cdot 1
\]
\[
\square
\]

Cor. 2.5.9. A \(\varphi \) homom. \(\varphi : G \rightarrow H \) is injective if \& only if \(\text{Ker } \varphi = \{1\} \).

Def. Let \(G \) be a group, let \(a \in G \).
The conjugates of \(a \) are the elements \(g \cdot a \cdot g^{-1} \) for \(g \in G \).

Conjugation by \(g \in G \) is the map \(G \rightarrow G, \; b \mapsto g \cdot b \cdot g^{-1} \).

Def. Let \(N \) be a subgroup of \(G \). We say that \(N \) is normal in \(G \) if every \(a \in N \) and \(g \in G \) satisfy \(g \cdot a \cdot g^{-1} \in N \).
Prop. 2.5.11. If \(\varphi : G \to H \) is a homomorphism, then
\[\ker \varphi \] is a normal subgroup of \(G \).

\[\text{Pf.} \] Let \(a \in \ker \varphi \) and \(g \in G \). Then,
\[\varphi(gag^{-1}) = \varphi(g)\varphi(a)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = 1, \]
so \(gag^{-1} \in \ker \varphi \). \(\Box \)

Rmk. Let \(a \in G \), \(b \in G \). Then TFAE:
- \(ab = ba \).
- \(aba^{-1} = b \).
- \(bab^{-1} = a \).

Examples: (a) Is \(SL_n \) a normal subgroup of \(GL_n \)?
Yes, since \(SL_n = \ker \det \).

(b) Is \(A_n \) a normal subgroup of \(S_n \)? Yes, since \(A_n = \ker \text{sign} \).

(c) Is \(\langle s_1 \rangle \) a normal subgroup of \(S_3 \)? No, since
\[S_3 S_2 S_2^{-1} = \langle 1, 2, 3 \rangle \notin \langle s_1 \rangle. \]
(d) If G is any group, then $\mathbb{Z}/3$ and G are normal subgroups of G.

(e) Let $n \geq 2$.

$$O_n(\mathbb{R}) = \{ \text{orthogonal group of } \mathbb{R}^n \}$$

$$= \{ A \in GL_n(\mathbb{R}) \mid A^T A = I_n \}$$

$$= \{ \text{distance-preserving linear transformations } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \text{isometries of } \mathbb{R}^n \}. \tag{2}$$

E.g. $O_2(\mathbb{R}) = \{ \text{rotations around } (0) \}$

\cup vertices of reflections in lines through (0).

Is $O_2(\mathbb{R})$ a normal subgroup of $GL_2(\mathbb{R})$?

E.g. let $a = (90^\circ \ \text{rotation}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in O_2(\mathbb{R})$.

Let $g = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, $g^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

$g^{-1} a g$ acts as

$\begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}$
Is $g \circ g^{-1} \in O_2(R)$?

not distance-preserving $\implies \notin O_2(R)$.

So, not normal.