6.5. Dyck paths

Def: An up-down path is (informally) a path in \mathbb{Z}^2 that uses only the following two types of steps:

- "positive steps" (i.e., steps $(a, b) \rightarrow (a+1, b+1)$);
- "negative steps" (i.e., steps $(a, b) \rightarrow (a+1, b-1)$).

Ex:

A Dyck path is an up-down path that never falls below the x-axis (i.e., each point (x, y) on the path satisfies $y \geq 0$).
Ex: The Dyck paths from \((0,0)\) to \((6,0)\) are

\[\text{There are } 5 = \binom{3}{2} \text{ of them.}\]
Prop. 6.8. Let \(n \in \mathbb{N} \). Then,
\[
\left(\text{# of Dyck paths from } (0,0) \text{ to } (2n,0) \right) = C_n.
\]

Proof. The map
\[
\{ \text{Dyck paths from } (0,0) \text{ to } (2n,0) \} \rightarrow \{ \text{legal paths from } (0,0) \text{ to } \{n,n\}\}
\]
which replaces each point \((x,y)\) on the Dyck path by
\[
\left(\frac{x+y}{2}, \frac{x-y}{2} \right)
\]
is a bijection. Thus, it follows from
\[
\left(\text{# of legal paths} \right) = C_n.
\]

\[
\square
\]

6.6, Super-Catalan numbers

Def. Let \(n,m \in \mathbb{N} \). Set
\[
T(m,n) = \frac{(2m)! \cdot (2n)!}{m! \cdot n! \cdot (m+n)!}.
\]

Thm. 6.9. (a) \(T(m,n) \) is a positive integer \(\forall m,n \in \mathbb{N} \), and is even when \(m+n > 0 \).

(b) \(T(m,n) = \binom{2m}{m} \binom{2n}{n} / \binom{m+n}{m} \) \(\forall m,n \in \mathbb{N} \).
(c) \(T(m, 0) = \binom{2^m}{m} \quad \forall m \in \mathbb{N}, \)

(d) \(T(m, 1) = 2 \cdot C_m \quad \forall m \in \mathbb{N}, \)

(e) \(4 \cdot T(m, n) = T(m+1, n) + T(m, n+1) \quad \forall m, n \in \mathbb{N}, \)

(f) \(T(m, n) = T(n, m) \quad \forall m, n \in \mathbb{N}. \)

(g) \(T(m, n) = \sum_{k=-p}^{p} (-1)^k \binom{2m}{m+k} \binom{2n}{n-k}, \) \(\text{where} \quad p = \min \{m, n\}. \)

Proofs. See [lecture notes, Exercise 3.24] and/or google for "super-Catalan numbers". No one knows what \(T(m, n) \) counts.

7. Necklaces

7.1. \(\phi \) & \(\mu \)

Def. Let \(\mathcal{P} \) be the set \(\{1, 2, 3, \ldots, \mathcal{P} \}. \)

(as opposed to \(\mathbb{N} =\{0, 1, 2, 3, \ldots, \mathcal{N} \}. \)
Recall: Euler's totient function is the function \(\phi: \mathbb{P} \to \mathbb{N} \) sending each \(n \) to
the \(\# \) of all \(m \in \mathbb{N} \) coprime to \(n \).

Prop. 7.1. Let \(n \in \mathbb{P} \). Let \(P_1, P_2, \ldots, P_k \) be the distinct prime divisors of \(n \). Then, \(\phi(n) = n \prod_{i \in \mathbb{P}^k} (1 - \frac{1}{P_i}) \).

Proof. This is Thm 2.30 with new notations.

Thm. 7.2. Let \(n \in \mathbb{P} \). Then, \(\sum_{d|n} \phi(d) = n \).

Here and in the following,
"\(\sum \)" means "\(\sum_{d \in \mathbb{P}; \ d|n} \)".

Proof of Thm. 7.2. We have

\[
(63) \quad n = \sum_{i \in [n]} 1 = \sum_{d|n} \sum_{i \in [n]; \ \gcd(i,n)=d} 1
\]
(recall: \(\gcd(a, b) \) is the greatest common divisor of \(a \) and \(b \); it is divisible by each other divisor of \(a \) and \(b \)).

But fix a positive divisor \(d \) of \(n \).

Then, the map

\[
\{ i \in [n] \mid \gcd(i, n) = d \} \rightarrow \{ m \in \left[\frac{n}{d} \right] \mid m \text{ is coprime to } \frac{n}{d} \},
\]

\[i \mapsto i/d \]

is well-defined & bijective. Thus,

\[
\text{(\# of } i \in [n] \text{ such that } \gcd(i, n) = d) = \left(\text{(\# of } m \in \left[\frac{n}{d} \right] \text{ such that } m \text{ is coprime to } \frac{n}{d} \right) = \phi \left(\frac{n}{d} \right) \quad \text{(by the definition of } \phi) .
\]

In other words,

\[
\sum_{\substack{i \in [n] \\ \gcd(i, n) = d}} 1 = \phi \left(\frac{n}{d} \right) .
\]
Summing up this equality over all positive divisors d of n, we get
\[
\sum_{d \mid n} \sum_{i \in \mathbb{Z}_+ ; \gcd(i,n) = d} 1 = \sum_{d \mid n} \phi\left(\frac{n}{d}\right) = \sum_{d \mid n} \phi(d)
\]
(here, we substituted d for n/d, since the map \{positive divisors of n\} \rightarrow \{positive divisors of n^2\},
\[d \rightarrow \frac{n}{d}\]
is bijective).

Thus, (63) becomes \(n = \sum_{d \mid n} \phi(d) \).

Remark. Alternative way to explain this proof:

Double-count the n fractions $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n}{n}$.

After cancelling, their denominators will be divisors of n,
with each positive divisor d occurring exactly $\phi(d)$ times.
Def. An \(n \in \mathbb{P} \) is said to be **squarefree** if

\[
\text{no } p \text{ square } > 1 \text{ divides } n. \\
\text{perfect square}
\]

In other words, \(n \) is squarefree if each prime appears at most once in its factorization.

For example, \(15 \) is a squarefree (since \(15 = 3 \times 5 \)) but \(12 \) is not (since \(2^2 | 12 \) or since \(12 = 2^2 \times 3 \)).

Def. The (number-theoretical) **Möbius function** is the function \(\mu: \mathbb{P} \rightarrow \mathbb{Z} \) sending each \(n \) to

\[
\begin{cases}
(-1)^{\text{(# of prime factors of } n)} & \text{if } n \text{ is squarefree} \\
0 & \text{otherwise}
\end{cases}
\]

Ex:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu(n))</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Thm. 7.3. Let \(n \in \mathbb{P} \). Then, \(\sum_{d \mid n} \mu(d) = [n=1] \).

Proof. Let \(p_1, p_2, \ldots, p_k \) be the distinct prime factors of \(n \).

Then, \(n = 1 \) is equivalent to \(k = 0 \).

Thus, \([n=1] = [k=0] \).

Now, the divisors of \(n \) all have the form \(p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \) with \(a_1, a_2, \ldots, a_k \geq 0 \). Among these, the squarefree divisors are the ones where \(a_1, a_2, \ldots, a_k \leq 1 \).

Thus, the squarefree divisors of \(n \) are precisely the numbers \(\prod_{i \in I} p_i \) for \(I \subseteq \{k\} \). More precisely, the map

\[
I \mapsto \prod_{i \in I} p_i
\]

is a bijection (by the Fundamental Theorem of Arithmetic).

Hence, \(\sum_{d \mid n, d \text{ squarefree}} \mu(d) = \sum_{I \subseteq \{k\}} \mu\left(\prod_{i \in I} p_i \right) \).
\[
\sum_{I \in \mathcal{K}} (-1)^{|I|} = \left[\mathcal{K} = \emptyset \right] \quad (\text{by Thm. 2.24})
\]

\[
\left[k = 0 \right] = \left[n = 1 \right].
\]

Now,
\[
\sum_{d \mid n} \mu(d) = \sum_{d \mid n; \ d \text{ is squarefree}} \mu(d) + \sum_{d \mid n; \ d \not\text{ is squarefree}} \mu(d)
\]

\[
= \left[n = 1 \right]
\]

\[
= \left[n = 1 \right].
\]

Thm. 7.4 (number-theoretical Möbius inversion I).

Let \((a_1, a_2, a_3, \ldots) \) and \((b_1, b_2, b_3, \ldots) \) be two sequences of numbers. Assume that

\[
a_n = \sum_{d \mid n} b_d \quad \text{for all } n \in \mathbb{P}.
\]
Then,

\[b_n = \sum_{d \mid n} \mu \left(\frac{n}{d} \right) a_d \quad \text{for all } n \in \mathbb{P}. \]

(65)

Ex: In the situation of Thm. 7.4, we have

\[b_8 = a_8 - a_4 \quad (\text{by (65) for } n = 8) \]

and

\[b_{12} = a_{12} - a_6 - a_4 + a_2 \quad (\text{by (65) to } n = 12). \]

Check:

\[a_8 - a_4 = (b_8 + b_4 + b_2 + b_1) - (b_4 + b_2 + b_1) = b_8; \]

\[a_{12} - a_6 - a_4 + a_2 = b_{12} (b_{12} + b_6 + b_4 + b_3 + b_2 + b_1) \]

\[- (b_6 + b_3 + b_2 + b_1) \]

\[- (b_4 + b_2 + b_1) \]

\[+ (b_2 + b_1) \]

\[= b_{12}. \]

Proof of Thm. 7.4. Fix \(n \in \mathbb{P}. \) Then,
\[
\sum_{d \mid n} \mu \left(\frac{n}{d} \right) a_d = \sum_{e \mid n} \mu \left(\frac{n}{e} \right) a_e = \sum_{e \mid n} \mu \left(\frac{n}{e} \right) \sum_{d \mid e} b_d \\
= \sum_{e \mid n} \sum_{d \mid e} \mu \left(\frac{n}{e} \right) b_d = \sum_{d \mid n} \sum_{e \mid \frac{n}{d}} \mu \left(\frac{n}{e} \right) b_d \\
= \sum_{f \mid \frac{n}{d}} \sum_{e \mid f} \mu \left(\frac{f}{e} \right)
\]

(here, we substituted \(f \) for \(\frac{n}{e} \), since the map \(\{ \text{divisors } e \text{ of } n \text{ that satisfy } d \mid f \} \) \(\rightarrow \) \(\{ \text{divisors of } \frac{n}{e} \} \), \(e \rightarrow \frac{n}{e} \) is a bijection)
\[\sum \frac{\mu(f)}{\Delta} b_d \]

(by Thm. 7.3, applied to \(\frac{n}{d} \) instead of \(n \))

\[\sum \left[\frac{n}{d} = 1 \right] b_d = \sum [d = n] b_d = b_n, \quad \Box \]

Rmk. The converse also holds: \((65) \Rightarrow (64) \).

Prop. 7.5. Let \(n \in \mathbb{P} \). Then, \(\sum \frac{n}{d} \mu(d) = \phi(\Omega(n)) \).

1st proof. Thm. 7.2 says \(n = \sum \phi(d) \), for all \(n \in \mathbb{P} \).

Thus, Thm. 7.4 (applied) to \(\alpha_i = i \) and \(b_i = \phi(i) \) yields
\[\phi(n) = \sum_{d \ln} \mu\left(\frac{n}{d}\right) \frac{n}{d} = \sum_{d \ln} \mu(d) \frac{n}{d} \]

(here, we have substituted \(\frac{n}{d} \) for \(d \) in the sum, as before).

2nd proof (idea). Let \(p_1, p_2, \ldots, p_k \) be the distinct prime divisors of \(n \). Then, Prop. 7.4 yields

\[\phi(n) = n \prod_{i \in \{p\}} \left(1 - \frac{1}{p_i}\right) \]

Prop. 2.25(b)

\[= n \sum_{I \subseteq \{p\}} (-1)^{|I|} \prod_{i \in I} \frac{1}{p_i} \]

(by the same reasoning) (as in the proof of Thm. 7.3)

\[= n \sum_{d \text{ is squarefree}} \mu(d) \frac{1}{d} \]

(since \(\mu(d) = 0 \)) (since \(\mu(d) = 0 \))

\[= n \sum_{d \ln} \mu(d) \frac{1}{d} \]

(when \(d \) is not squarefree)
\[= \sum_{d \mid n} \mu(d) \frac{n}{d}. \]

See number theory texts for more about \(\phi, \mu \) and similar functions (e.g. [Niven/Zuckerman/Montgomery]).

7.2. A simple lemma

Prop. 7.6. Let \(X \) be a set, let \(\sigma \) be a permutation of \(X \).

Let \(n \) be a positive integer such that \(\sigma^n = \text{id} \).

Then, \(\sigma \) has a disjoint union the size of any cycle of \(\sigma \) divides \(n \).

Proof. Let \(C \) be a cycle of \(\sigma \). We must show \(|C| \mid n \).

Let \(\sigma \in C \). Let \(k \) be the smallest positive integer such that \(\sigma^k(x) = x \).

Now, if \(p \in N \) is arbitrary, then

\[g^p(x) = g^{p \cdot k}(x), \] (66)
where \(p \% k \) means "remainder of \(p \) modulo \(k \)."

(Proof of (66): Induction on \(p \), using \(g^k(x) = \text{id} \).)

Also, \(g^0(x), g^1(x), \ldots, g^{k-1}(x) \) are distinct, since otherwise there would be \(0 \leq a < b < k \) such that \(g^a(x) = g^b(x) \) \(\Rightarrow x = g^{b-a}(x) \), which would contradict the minimality of \(k \).

Thus, \(C = \{ g^0(x), g^1(x), \ldots, g^{k-1}(x) \} \) \(\text{for distinct elements} \) \(k \) elements \(\text{distinct elements} \), so that \(|C| = k \).

Now, (66) yields \(g^n(x) = g \% k \), \(g^n(x) = g^n(x) = x = g^0(x) \)

\(\Rightarrow \) \(n \% k = 0 \) (since \(g^0(x), g^1(x), \ldots, g^{k-1}(x) \) are distinct)

\(\Rightarrow \) \(k \mid n \Rightarrow \# |C| = k \mid n. \) \(\Box \)
(We have used Prop. 7.6 already when we were discussing shift-equivalence.)

7.3. Necklaces

Idea:

Consider rotated versions to be identical.

but reflected versions are not (unless you can also set them by rotation).
Def: Let Q be a set, let n be a positive integer.

(2) The map
$$g : Q^n \to Q^n,$$
$$(q_1, q_2, \cdots, q_n) \mapsto (q_2, q_3, \cdots, q_n, q_1)$$

is called rotation.

This g is a permutation of Q^n, and satisfies $g^n = id$.

(b) The cycles of g are called necklaces with n beads and colors from Q.

(idea: the necklace containing (q_1, q_2, \cdots, q_n) is
if \((g_1, g_2, \ldots, g_n) \in \mathbb{Q}^n\), then \([(g_1, g_2, \ldots, g_n)]\) shall mean the necklace (= cycle of \(p\)) that contains it.

(c) The set of all necklaces with \(n\) beads and colors from \(\mathbb{Q}\), denoted by \(\mathbb{Q}^n_{\text{neck}}\).

(d) The cardinality of a necklace (i.e., the number of \(n\)-tuples \(\vec{g} \in \mathbb{Q}^n\) that belong to the necklace) is called its \underline{period}.

[Ex: The necklace \([(2, 1, 1, 2, 1, 1)]\) is equal to \(\{(2,1,1,2,1,1), (1,1,2,1,1,2), (1,2,1,1,2,1)\}\) and has period 3.]
(e) The set of all necklaces with \(n \) beads and colors from \(Q \) having period \(k \) is denoted by \(Q^n_{\text{neck},k} \).

Question: How many necklaces are there in \(Q^n_{\text{neck}} \), when \(n \) and \(|Q| \) are given?

Cor. 7.7: The period of any necklace in \(Q^n_{\text{neck}} \) is a positive divisor of \(n \).

Proof. It is the size of a cycle of \(p \), thus divides \(n \) (by Prop. 7.6).

Lem. 7.8. Let \(Q^n \) and \(n \) be as before, let \(k \) be a positive divisor of \(n \). Then,

\[
|Q^n_{\text{neck},k}| = |Q^k_{\text{neck},k}|.
\]
Thm. 7.9. Let Q and n be as before. Let $q = |Q|$.

(a) we have $|Q_{\text{neck}}, n| = \frac{1}{n} \sum \mu\left(\frac{n}{d}\right) q^d = \frac{1}{n} \sum \mu(d) q^{n/d}$.

(b) we have $|Q_{\text{neck}}| = \frac{1}{n} \sum \phi\left(\frac{n}{d}\right) q^d = \frac{1}{n} \sum \phi(d) q^{n/d}$.

(c) Let $Q = [q]$, and let $a_1, a_2, \ldots, q \in \mathbb{N}$. Then,

(\# of \# of necklaces with n beads and colors \# from Q, where color i appears a_i many times \forall i)

\[
= \frac{1}{n} \sum \phi\left(\frac{n}{d}\right) \left(\frac{d}{a_1 \frac{d}{n}, a_2 \frac{d}{n}, \ldots, a_q \frac{d}{n}} \right).
\]

This is understood to be 0 unless all the $a_i \frac{d}{n} \in \mathbb{N}$ and $\sum a_i = \frac{n}{d}$.