Continuing the proof of Thm. 8.6 (the "O" was premature):

\[\Rightarrow: \text{Assume } [x^0]a \text{ has an inverse in } K.\]

Write \(a \) as \((a_0, a_1, a_2, \ldots)\), and try to find an FPS \(b = (b_0, b_1, b_2, \ldots) \) with \(ab = 1 \).

So we want

\[
\begin{align*}
(1, 0, 0, 0, \ldots) &= 1 = ab = (a_0, a_1, a_2, \ldots) (b_0, b_1, b_2, \ldots) \\
&= (a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, \ldots).
\end{align*}
\]

So we want

\[
\begin{align*}
1 &= a_0b_0, \\
0 &= a_0b_1 + a_1b_0, \\
0 &= a_0b_2 + a_1b_1 + a_2b_0, \\
0 &= a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0, \\
&\quad \quad \quad \quad \quad \quad \vdots
\end{align*}
\]
Theorem 8.7. \(\frac{1}{1-x} \) has an inverse, which is \(1 + x + x^2 + x^3 + \cdots \). Hence, \(\frac{1}{1-x} \) is the FPS for each \(n \in \mathbb{N} \), since a \(k \)-make \(a_1 \) has a (mult.) inverse \(a^{-1} \), then we can define \(a^{-n} \) for each \(n \in \mathbb{N} \).

Proof. If \(a \in K[x] \) has a (mult.) inverse \(a^{-1} \), then we can define \(a^{-n} \) for each \(n \in \mathbb{N} \), since \(a_0 = \frac{1}{a_1} \) has a mult. inverse and thus can be divided by.

Solve this system by elimination: get \(\alpha_1 \) from the next, etc.

this can be done, since \(a_0 = \frac{1}{a_1} \) has a mult. inverse.
2nd proof:

\[(1-x)(1+x+x^2+x^3+\ldots) = (1-x^2)+(x-x^2)+\left(x^2-x^3\right)+\left(x^3-x^4\right)+\ldots = 1. \]

\[\text{Thm. 8.8 ("Newton's binomial theorem").}\]

\[(1+x)^n = \sum \binom{n}{k} x^k \quad \forall n \in \mathbb{Z},\]

\[\text{actually an \infty sum if } n < 0\]

\[\text{Proof idea: For } n > 0, \text{ this follows from the regular binomial thm.}\]

\[\text{For } n = -1, \text{ this says } (1+x)^{-1} = \sum \frac{(-1)^k}{k} x^k, \text{ which is similar to Thm. 8.7.}\]

\[\text{Lem. 8.9. } (1+x)^{-n} = \sum \binom{-n}{k} x^k \quad \forall n \in \mathbb{N}.\]

\[\text{Proof idea for Lem. 8.9. Induction on } n.\]

\[\text{For the Ind. step, we need to check:}\]
\[
\left(\sum_{k} (-1)^{k} \binom{n+k-1}{k} x^k \right) \cdot (1+x)^{-1} = \sum_{k} (-1)^{k} \binom{n+k}{k} x^k.
\]

Equivalently,
\[
\sum_{k} (-1)^{k} \binom{n+k-1}{k} x^k = \left(\sum_{k} (-1)^{k} \binom{n+k}{k} x^k \right) \cdot (1+x)^{-1}.
\]

The RHS can be rewritten as
\[
\sum_{k} (-1)^{k} \binom{n+k}{k} x^k + \sum_{k} (-1)^{k} \binom{n+k}{k} x^{k+1}
\]
\[
= \sum_{k} (-1)^{k-1} \binom{n+k-2}{k-1} x^k
\]
\[
= \sum_{k} \left[(-1)^{k} \binom{n+k}{k} + (-1)^{k-1} \binom{n+k-1}{k-1} \right] x^k
\]
\[
= (-1)^{k} \left(\binom{n+k}{k} - \binom{n+k-1}{k-1} \right)
\]
\[
= (-1)^{k} \binom{n+k-1}{k} \text{ (by the recurrence of binomial coefficients)}
\]
\[= \sum_{k=0}^n (-1)^k \binom{n+k-1}{k} x^k,\]

which is the LHS.

8.5. Substitution

Prop. Let \(f \) and \(g \) be two FPS with \([x^0]g = 0 \) (that is, \(g = g_1 x + g_2 x^2 + g_3 x^3 + \ldots \)).

Then, the FPS \(f \circ g \) (also known as \(f(g) \)) is defined as follows:

Write \(f \) as \(f = \sum_{n \geq 0} f_n x^n \) and set \(f \circ g = \sum_{n \geq 0} f_n g^n \).

We call \(f \circ g \) the composition of \(f \) with \(g \), or the result of substituting \(g \) for \(x \) in \(f \).

We will NOT call it \(f(g) \), to avoid clashing with product notation.
The sum \(\sum_{n \geq 0} f_n g^n \) in the above definition is well-defined, i.e., the family \((f_n g^n)_{n \in \mathbb{N}} \) is summable, since

\[(86) \]

the first \(n \) coefficients of \(g^n \) are 0, \(\forall n \in \mathbb{N}. \)

(86) is easy to prove by induction on \(n. \)

Alternatively: Write \(\mathbb{N} \) \(g = xh \) for some FPS \(h, \) since

\[[\mathbb{N} \text{ x}^n g = 0. \) Thus, \(g^n = x^n h^n. \)

Example: We can substitute \(x + x^2 \) for \(x \) into \(1 + x + x^2 + \ldots. \)

The result is

\[1 + (x + x^2) + (x + x^2)^2 + (x + x^2)^3 + (x + x^2)^4 + \ldots. \]

\[= 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + \ldots. \]

\[= \sum_{n \geq 0} f_{n+1} x^n, \]

where \(f_i = \) Fibonacci \(\# \) s.

This is because substituting \(x + x^2 \) for \(x \) in
\[1 + x + x^2 + \ldots = \frac{1}{1-x} \]

yields
\[1 + (x+x^2) + (x^2+x^2)^2 + (x+x^2)^3 + \ldots \]
\[= \frac{1}{1-(x+x^2)} = \frac{1}{1-x-x^2} \]
\[\text{Ex. 1.} \quad 88.1. \quad \sum_{n=0}^{\infty} f_{n+1} x^n, \]

Here, we have tacitly used:

Prop 8.10. Substitution satisfies the rules you would expect:
\[(g_1+g_2) \circ h = g_1 \circ h + g_2 \circ h \]
\[(g_1g_2) \circ h = (g_1 \circ h)(g_2 \circ h) \]
\[f \circ (g \circ h) = (f \circ g) \circ h \]

(See [Hoehn, Ch. 7] for details.)

This all justifies Ex. #1 in 88.1.

Rmk. A polynomial is a FPS \((c_0, a_1, a_2, \ldots)\) such that all but finitely many \(i \in \mathbb{N} \) satisfy \(a_i = 0 \).
To justify Ex. 2, we need to define \((1+x)^n\) for \(n \in \mathbb{Z}\).

Option 1: define \((1+x)^n = \sum_{k} \binom{n}{k} x^k\).

But then, we would have to prove all the rules of exponents:
\[
(1+x)^n(1+x)^m = (1+x)^{n+m},
\]
\[
((1+x)^n)^m = (1+x)^{nm},
\]
\[\text{etc.}\]

Option 2: define \((1+x)^n = \exp \left(n \log (1+x)\right)\).

What are \(\exp\) and \(\log\)? We define
\[
\exp = \sum_{n \geq 0} \frac{1}{n!} x^n, \quad \log (1+x) = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} x^n.
\]

So \((1+x)^n = \exp \circ \left(n \log (1+x)\right)\).

You would still have to prove many things, but this is more doable. See [Loehr] or [my log/exp notes from Fall 2017 Math 4930J].
8.6. Another example

Here is another application of FPS; see [Galvin, §40 (1)].

Def. Let \(n \in \mathbb{N} \), let \(\sigma \in S_n \). The order of \(\sigma \) is the smallest \(k > 0 \) such that \(\sigma^k = id \).

Prop. 8.11. Let \(n \in \mathbb{N} \) and \(\sigma \in S_n \). The order of \(\sigma \) is well-defined & equals the lcm (= least common multiple) of the lengths of the cycles of \(\sigma \).

Proof idea. You just need to show that an \(m \in \mathbb{N} \) satisfies \(\sigma^m = id \) if & only if the length of each cycle of \(\sigma \) divides \(m \).

For each \(n \in \mathbb{N} \), let \(a_n \) be the number of permutations \(\sigma \in S_n \) having odd order. What is \(a_n \)?
Ex: \(n = 4: \)

\[
\begin{array}{|c|c|}
\hline
\text{id} \quad \text{order 1} & \text{8 permutations} \quad \text{order 3} \\
\hline
\end{array}
\]

\[\Rightarrow a_4 = 9 \]

Similarly, \(a_3 = 3 \) and \(a_2 = 1 \) and \(a_5 = 45. \)

(OEIS: A000246.)

First observation: A perm. \(\sigma \in S_n \) has odd order \(\iff \) all cycles of \(\sigma \) have odd lengths. Thus,

\[
a_n = \sum_{(i_1, i_2, \ldots, i_n) \in \mathbb{N}^n} \quad \text{(# of } \sigma \in S_n \text{ with } i_j \text{ cycles of length } j \text{)}
\]

\[
\begin{aligned}
&i_k = 0 \quad \forall \text{ even } k; \\
i_k > 0 \quad \forall \text{ odd } k; \\
i_1 + 2i_2 + \cdots + ni_n = n
\end{aligned}
\]

\[
= \frac{n!}{\prod i_k! \cdot i_1! \cdot i_2! \cdots i_n! \cdot 1^2 \cdot 2^2 \cdots n^2}
\]

(by Exercise after Prop. 4.13)
\[\sum \frac{n!}{i_1! i_2! \cdots i_n! 1^{i_1} 2^{i_2} \cdots n^{i_n}} \]

Divide this multiply this by \(\alpha^x \)

\[\sum \frac{n!}{i_1! i_2! \cdots 1^{i_1} 2^{i_2} \cdots} \]

\[\text{Multiply this identity by } \frac{x^n}{n!} \text{ to get} \]
\[
\frac{a_n x^n}{n!} = \sum_{(i_1, i_2, i_3, \ldots) \in \mathbb{N}^\infty} \sum_{i_k = 0}^{n} \ldots \prod_{k} \frac{1}{i_k!} \left(\frac{x^{i_1} x^{2i_2} \cdots}{x^{i_1} x^{2i_2} \cdots} \right)
\]

Summing this over all \(n \in \mathbb{N} \), we get

\[
\sum_{n \in \mathbb{N}} \frac{a_n x^n}{n!} = \sum_{(i_1, i_2, i_3, \ldots) \in \mathbb{N}^\infty} \sum_{i_k = 0}^{n} \ldots \prod_{k} \frac{1}{i_k!} \left(\frac{x^{i_1} x^{2i_2} \cdots}{x^{i_1} x^{2i_2} \cdots} \right)
\]
\[
\sum_{(i_1, i_2, i_3, \ldots) \in \mathbb{N}^\infty; i_k = 0 \text{ for all but finitely many } k} \frac{x^{1i_1} x^{3i_3} \ldots}{i_1! i_3! \ldots i_k^{i_k}} = \prod_{k \geq 1 \text{ odd}} \left(\sum_{i \in \mathbb{N}} \frac{x^{ki}}{i! k^i} \right)
\]

(Note that infinite products of PDFs can make sense just as infinite sums do.)

\[
= \prod_{k \geq 1 \text{ odd}} \left(\sum_{i \in \mathbb{N}} \frac{x^{ki}}{i! k^i} \right) = \prod_{k \geq 1 \text{ odd}} \exp \left(\frac{x^k}{k} \right)
\]
\[= \exp \left(\sum_{k \geq 1 \text{ odd}} x^k/k \right) \]

(here we used the rule
\[\prod \exp(x_i) = \exp \left(\sum_{i \in I} x_i \right), \]
\[\text{which is not hard to check}. \]

But \[\sum_{k \geq 1 \text{ odd}} x^k/k \]
\[= \frac{1}{2} \left(\sum_{k \geq 1} x^k/k - \sum_{k \geq 1} (-x)^k/k \right) \]
\[\overset{\text{"destructive interference"}}{=} -\log(1-x) - (-\log(1+x)) \]
\[= \frac{1}{2} \left(-\log(1-x) - (-\log(1+x)) \right) \]
\[= \frac{1}{2} \left(\log(1+x) - \log(1-x) \right) \]

so this becomes
\[\sum_{n \in \mathbb{N}} \frac{a_n x^n}{n!} = \exp \left(\frac{1}{2} \left(\log (1+x) - \log (1-x) \right) \right) \]

\[= \left(\frac{1+x}{1-x} \right)^{1/2} \]

\[= \frac{((1+x)(1-x))^{1/2}}{1-x} = \frac{(1-x^2)^{1/2}}{1-x} \]

\[= (1-x^2)^{1/2} \cdot \frac{(1-x)^{-1}}{1-x} = \sum_{k \geq 0} x^k \]

\[= \left(\sum_{k \geq 0} \frac{1}{k!} (-x^2)^k \right) \left(\sum_{k \geq 0} x^k \right) \]

\[= \left(\sum_{k \geq 0} \frac{1}{k!} (-1)^k x^{2k} \right) \left(\sum_{k' \geq 0} x^{k'} \right) \]
\[= \sum_{n>0} \left(\sum_{k\leq n/2} \binom{n/2}{k} (-1)^k \hat{x}^k \right) x^n. \]

Comparing coefficients, we get

\[\frac{a_n}{n!} = \sum_{k\leq n/2} \binom{n/2}{k} (-1)^k = \sum_{k=0}^{\ln/2}\binom{-1/2}{k} (\frac{1/2}{\ln/2})^k \]

\[= (-1)^{\ln/2} \binom{1/2-1}{\ln/2} \]

(by HW #2 exercise 4, applied to \(\ln/2 \))
and 1/2 instead of \(m \) and \(n \)
(since we did not need \(n \in N \) in that exercise)

\[= (-1)^{\ln/2} \left(-\frac{1/2}{\ln/2} \right) \frac{\text{HW#3 ex3(a)}}{(-1)^{\ln/2} \left(-\frac{1/4}{\ln/2} \right) \left(\frac{2\ln/2}{\ln/2} \right)} \]

\[= (1/4)^{\ln/2} \]
\[\left(\frac{1}{4} \right)^{\ln(2)} \left(\frac{2\ln(2)}{\ln(2)} \right) \]

Thus,

\[a_n = n! \cdot \left(\frac{1}{4} \right)^{\ln(2)} \left(\frac{2\ln(2)}{\ln(2)} \right) \]

9. **Partitions**

9.4. **Basics:**

Recall (from §3.6): A **partition** of an \(n \in \mathbb{Z} \) means a weakly decreasing tuple of positive integers with sum \(n \).

The entries of a partition are called its **parts**.

\[p(n) : = (\# \text{ of partitions of } n) \]

\[p_k(n) : = (\# \text{ of partitions of } n \text{ into } k \text{ parts}) \]
Prop. 3.13 (e) yields
\[p_k(n) = p_k(n-k) + p_{k-1}(n-k) \]
\[\forall k \geq 1 \quad \forall n \in \mathbb{N}. \]

Also,
\[p(n) = p_0(n) + p_1(n) + \ldots + p_n(n). \]

Thm. 9.1.
\[\sum_{n \geq 0} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}. \]

(The product on the RHS is well-defined, because multiplying a FPS by \(\frac{1}{1-x^k} \) does not affect its first \(k \) coefficients.)

Proof.
\[\prod_{k=1}^{\infty} \frac{1}{1-x^k} = \prod_{k=1}^{\infty} (1 + x^k + (x^k)^2 + (x^k)^3 + \ldots) \]
\[= \prod_{k=1}^{\infty} (1 + x^k + x^{2k} + x^{3k} + \ldots) \]
\[= \left(1 + x + x^2 + x^3 + x^4 + \ldots \right)\]
\[\cdot \left(1 + x^2 + x^4 + x^6 + x^8 + \ldots \right)\]
\[= \left(1 + x^3 + x^6 + x^9 + \ldots \right)\]
\[= \left(1 + x^4 + x^8 + x^{12} + \ldots \right)\]
\[= \left(1 + x^5 + x^{10} + x^{15} + \ldots \right)\]
\[= 1 + x + 2x^2 + 3x^3 + 5x^4 + \ldots\]

Ways to get \(x^4\):

\[
\begin{array}{|c|c|c|c|c|}
\hline
(0, 0, 0, 0) & (4, 0, 0) & (2, 1, 0) & (1, 0, 1) & (0, 0, 1) \\
\hline
\end{array}
\]
What is the coefficient of x^n for a general $n \in \mathbb{N}$?

It is the number of ways to assemble x^n by picking an addend out of each factor.

In other words: It is the number of all $(m_1, m_2, m_3, \ldots) \in \mathbb{N}^\infty$ such that $1m_1 + 2m_2 + 3m_3 + \ldots = n$.

But

$$\{\text{partitions of } n\} \rightarrow \{ (m_1, m_2, m_3, \ldots) \in \mathbb{N}^\infty \mid 1m_1 + 2m_2 + 3m_3 + \ldots = n \}$$

$$\lambda \mapsto (\text{# of parts } 1 \text{ in } \lambda, \text{# of parts } 2 \text{ in } \lambda, \text{# of parts } 3 \text{ in } \lambda, \ldots)$$

is a bijection. Thus, our coefficient is the number of partitions of n. But this is $p(n)$. \[\square\]