1 Exercise 1

1.1 Problem

Let A and B be two finite sets, and let $f : A \to B$ be a map.

(a) Prove that the number of maps $g : B \to A$ satisfying $f \circ g \circ f = f$ is

$$|A|^{(B \setminus f(A))} \prod_{b \in f(A)} |f^{-1}(b)|.$$

(Here and in the following, $f(A)$ denotes the set $\{f(a) \mid a \in A\}$, whereas $f^{-1}(b)$ denotes the set $\{a \in A \mid f(a) = b\}$.)

(b) Prove that the number of maps $g : B \to A$ satisfying $f \circ g \circ f = f$ and $g \circ f \circ g = g$ is

$$|f(A)|^{(B \setminus f(A))} \prod_{b \in f(A)} |f^{-1}(b)|.$$
[Hint: For part (a), observe that
\[|A|^{|B \setminus f(A)|} \prod_{b \in f(A)} |f^{-1}(b)| = \prod_{b \in B} \begin{cases} |f^{-1}(b)|, & \text{if } b \in f(A); \\ |A|, & \text{if } b \notin f(A). \end{cases} \]

What does this suggest about the construction of such maps \(g \)?

1.2 REMARK

The maps \(g \) in part (a) are called “generalized inverses” of \(f \). The maps \(g \) in part (b) are called “reflexive generalized inverses” of \(f \). Note that one consequence of part (b) is that there is always at least one reflexive generalized inverse of \(f \) (unless \(A \) is empty).

One can similarly define generalized inverses for linear maps between vector spaces; the resulting notion is much more well-known and has books devoted to it (see the Wikipedia for an overview).

1.3 SOLUTION

[...]

2 EXERCISE 2

2.1 PROBLEM

Let \(n \in \mathbb{N} \) and \(m \in \mathbb{N} \). Prove that
\[(n + m) \sum_{j=0}^{m} (-1)^j \binom{m}{j} \binom{n+j}{j} = n. \]

[Hint: The fraction on the left hand side has too many \(j \)'s. Try to simplify it to get the number of \(j \)'s down to just 1 (not counting the exponent in \((-1)^j\)).]

2.2 SOLUTION

[...]

Darij Grinberg, 00000000 2 dgrinber@umn.edu
3 Exercise 3

3.1 Problem
Let n be a positive integer. Let a_1, a_2, \ldots, a_n be n integers. Let $F : \mathbb{Z} \to \mathbb{R}$ be any function. Prove that

$$F(\max \{a_1, a_2, \ldots, a_n\}) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} F(\min \{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\}).$$

[Hint: This generalizes Exercise 5 on Spring 2018 Math 4707 homework set #2. Will some of the solutions given there still apply to this generalization?]

3.2 Solution

[...]

4 Exercise 4

4.1 Problem
Recall once again the Fibonacci sequence (f_0, f_1, f_2, \ldots), which is defined recursively by $f_0 = 0$, $f_1 = 1$, and

$$f_n = f_{n-1} + f_{n-2} \quad \text{for all } n \geq 2. \tag{1}$$

Now, let us define f_n for negative integers n as well, by “applying (1) backwards”: This means that we set $f_{n-2} = f_n - f_{n-1}$ for all integers $n \leq 1$. This allows us to recursively compute $f_{-1}, f_{-2}, f_{-3}, \ldots$ (in this order). For example,

$$f_{-1} = f_1 - f_0 = 1 - 0 = 1;$$
$$f_{-2} = f_0 - f_{-1} = 0 - 1 = -1;$$
$$f_{-3} = f_{-1} - f_{-2} = 1 - (-1) = 2,$$

etc.

(a) Prove that $f_{-n} = (-1)^{n-1} f_n$ for each $n \in \mathbb{Z}$.

(b) Prove that $f_{n+m+1} = f_n f_m + f_{n+1} f_{m+1}$ for all $n \in \mathbb{Z}$ and $m \in \mathbb{Z}$.

(c) Prove that $7f_n = f_{n-4} + f_{n+4}$ for all $n \in \mathbb{Z}$.

[Hint: This is not an exercise about the combinatorial interpretations (domino tilings, lacunar subsets, etc.) of Fibonacci numbers. Make sure that your proofs cover all integers, not just elements of \mathbb{N}.]

4.2 Solution

[...]
5 Exercise 5

5.1 Problem
Let \(n \in \mathbb{N} \) and \(p \in \{0, 1, \ldots, n\} \). A \(p \)-derangement of \([n]\) shall mean a permutation \(\sigma \) of \([n]\) such that every \(i \in [n - p] \) satisfies \(\sigma(i) \neq i + p \). Compute the number of all \(p \)-derangements of \([n]\) as a sum of the form \(\sum_{i=0}^{n-p} \cdot \cdot \cdot \).

[Hint: The case \(p = 1 \) was Exercise 6 on Spring 2018 Math 4707 homework set #2.]

5.2 Solution
[...]

6 Exercise 6

6.1 Problem
Let \(n \) and \(k \) be positive integers. A \(k \)-smord will mean a \(k \)-tuple \((a_1, a_2, \ldots, a_k) \in [n]^k \) such that no two consecutive entries of this \(k \)-tuple are equal (i.e., we have \(a_i \neq a_{i+1} \) for all \(i \in [k - 1] \)). For example, \((4, 1, 4, 2, 6)\) is a 5-smord (when \(n \geq 6 \)), but \((1, 4, 4, 2, 6)\) is not.

It is easy to see that the number of \(k \)-smords is \(n(n-1)^{k-1} \). (See, e.g., Exercise 5 on Math 4990 Fall 2017 homework set #3.)

A double \(k \)-smord shall mean a pair \(((a_1, a_2, \ldots, a_k), (b_1, b_2, \ldots, b_k))\) of two \(k \)-smords \((a_1, a_2, \ldots, a_k)\) and \((b_1, b_2, \ldots, b_k)\) such that every \(i \in [k] \) satisfies \(a_i \neq b_i \).

Prove that the number of double \(k \)-smords is \(n(n-1)(n^2-3n+3)^{k-1} \).

6.2 Remark
“Smord” is short for “Smirnov word” (which is how these tuples are sometimes called).

Double \(k \)-smords can also be regarded as \(2 \times k \)-matrices with entries lying in \([n]\) and with the property that no two adjacent entries are equal. (The double \(k \)-smord \(((a_1, a_2, \ldots, a_k), (b_1, b_2, \ldots, b_k))\) thus corresponds to the \(2 \times k \)-matrix \(\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ b_1 & b_2 & \cdots & b_k \end{pmatrix} \).)

6.3 Solution
[...]

Darij Grinberg, 00000000
dgrinber@umn.edu