Math 5705: Enumerative Combinatorics,
Fall 2018: Midterm 2

Darij Grinberg
January 10, 2019

due date: Wednesday, 14 November 2018 at the beginning of class,
or before that by email or canvas.
Please solve at most 4 of the 6 exercises!
Beware: Collaboration is not allowed on midterms!

NOTATIONS

Here is a list of notations that are used in this homework:

• We shall use the Iverson bracket notation as well as the notation \([n]\) for the set
\(\{1, 2, \ldots, n\}\) (when \(n \in \mathbb{Z}\)).

• If \(n \in \mathbb{N}\), then \(S_n\) denotes the set of all permutations of \([n]\).

• If \(n \in \mathbb{N}\) and \(\sigma \in S_n\), then:
 – a descent of the permutation \(\sigma\) denotes an element \(k \in [n - 1]\) satisfying \(\sigma(k) > \sigma(k + 1)\).
 – the descent set \(\text{Des} \sigma\) of \(\sigma\) is defined as the set of all descents of \(\sigma\).
 – the descent number \(\text{des} \sigma\) of \(\sigma\) is defined as the number of all descents of \(\sigma\) (that is, \(\text{des} \sigma = |\text{Des} \sigma|\)).
 – the one-line notation \(\text{OLN} \sigma\) of \(\sigma\) is defined as the \(n\)-tuple \((\sigma(1), \sigma(2), \ldots, \sigma(n))\).
 Often, this \(n\)-tuple is written with square brackets, i.e., as \([\sigma(1), \sigma(2), \ldots, \sigma(n)]\).
– for each $i \in [n]$, we define $\ell_i(\sigma)$ to be the number of all $j \in \{i + 1, i + 2, \ldots, n\}$ satisfying $\sigma(i) > \sigma(j)$.
– we say that σ is 312-avoiding if there exist no three elements $i, j, k \in [n]$ satisfying $i < j < k$ and $\sigma(j) < \sigma(k) < \sigma(i)$.
– we say that σ is 321-avoiding if there exist no three elements $i, j, k \in [n]$ satisfying $i < j < k$ and $\sigma(k) < \sigma(j) < \sigma(i)$.

• For any $n \in \mathbb{N}$ and any $i \in [n - 1]$, we let s_i denote the permutation in S_n that swaps i with $i + 1$ while leaving all other elements of $[n]$ unchanged. (This assumes that n is determined by the context.)

• For any $n \in \mathbb{N}$ and any k distinct elements i_1, i_2, \ldots, i_k of $[n]$, we let $cyc_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that sends $i_1, i_2, \ldots, i_{k-1}, i_k$ to $i_2, i_3, \ldots, i_k, i_1$ (respectively) while leaving all the other elements of $[n]$ unchanged. (Again, this relies on n being clear from the context.)

• For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, the notation $\langle n \rangle_k$ denotes the number of all permutations $\sigma \in S_n$ having exactly k descents. This is called an Eulerian number.

• If X is a set, and if $\alpha : X \to X$ and $\beta : X \to X$ are two maps, then the composition $\alpha \circ \beta : X \to X$ is simply denoted by $\alpha \beta$, and is called the product of α and β. This notation is used for permutations, in particular.

• If X is a set, if $k \in \mathbb{N}$, and if $f : X \to X$ is any map, then the map $f^k : X \to X$ is defined by

$$f^k = f \circ f \circ \cdots \circ f \quad (k \text{ times})$$

This map f^k is called the k-th power of f (or k-th composition power of f). These powers behave as one would expect as long as you have only one map $f : X \to X$ (meaning that $f^{a+b} = f^a f^b$ and $f^{ab} = (f^a)^b$ for any $a, b \in \mathbb{N}$); but be careful with several maps (e.g., two maps $f : X \to X$ and $g : X \to X$ don’t always satisfy $(fg)^a = f^a g^a$). See [Grinb16, Section 2.13.8] for details (where I write $f^{\circ k}$ instead of f^k).

• If X is a set, and if $f : X \to X$ is a map, then:
 – we say that f is an involution if and only if $f^2 = \text{id}$. (Note that every involution is automatically a permutation.)
 – we say that f is fixed-point-free if each $x \in X$ satisfies $f(x) \neq x$ (that is, if f has no fixed points). (Note that the fixed-point-free permutations are precisely the derangements.)
1 EXERCISE 1

1.1 PROBLEM

Let n and k be positive integers.

For each $i \in \{0, 1, \ldots, n-1\}$ and $\tau \in S_{n-1}$, we let $\tau^i_\leftarrow \in S_n$ be the permutation such that

$$\text{OLN} (\tau^i_\leftarrow) = (\tau(1), \tau(2), \ldots, \tau(i), n, \tau(i+1), \tau(i+2), \ldots, \tau(n-1))$$

(that is, $\text{OLN} (\tau^i_\leftarrow)$ is obtained from $\text{OLN} \tau$ by inserting an n right after the i-th entry).

(a) Prove that each $i \in \{0, 1, \ldots, n-1\}$ and $\tau \in S_{n-1}$ satisfy

$$[\text{des} (\tau^i_\leftarrow) = k] = [\text{des} \tau = k - 1 \text{ and } \tau(i) < \tau(i+1)] + [\text{des} \tau = k \text{ and } \tau(i) > \tau(i+1)],$$

where we set $\tau(0) = 0$ and $\tau(n) = 0$.

(b) Prove that the map

$$\{0, 1, \ldots, n-1\} \times S_{n-1} \to S_n,$$

$$(i, \tau) \mapsto \tau^i_\leftarrow$$

is a bijection.

(c) Prove that

$$\begin{bmatrix} n \\ k \end{bmatrix} = (k+1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + (n-k) \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}. $$

[Hint: You don’t need to write more than a few sentences for parts (a) and (b).]

1.2 SOLUTION

[...]

2 EXERCISE 2

2.1 PROBLEM

Let $n \in \mathbb{N}$ and $\sigma \in S_n$. For each $i \in [n]$, let

$$a_i = \text{cyc}_{i', i'-1, \ldots, i} = s_{i'-1} s_{i'-2} \cdots s_i \in S_n, \quad \text{where } i' = i + \ell_i(\sigma).$$

Prove that $\sigma = a_1 a_2 \cdots a_n$.

[Hint: Prove, “more generally”, that if $j \in \{0, 1, \ldots, n\}$ is such that $1, 2, \ldots, j$ are fixed points of σ, then $\sigma = a_{j+1} a_{j+2} \cdots a_n$.]
2.2 Solution

[...]

3 Exercise 3

3.1 Problem

Let $n \in \mathbb{N}$.

(a) Prove that any $\sigma \in S_n$ and any $i \in [n]$ satisfy $\sigma(i) \leq i + \ell_i(\sigma)$.

(b) Prove that, for a given $\sigma \in S_n$, the following three statements are equivalent:

 A: We have $\sigma(i) \leq i + 1$ for all $i \in [n-1]$.

 B: The permutation σ is both 321-avoiding and 312-avoiding.

 C: We have $\ell_i(\sigma) \in \{0, 1\}$ for each $i \in [n]$. (In other words, the Lehmer code of σ
 consists only of 0’s and 1’s.)

(c) Assuming that $n \geq 1$, prove that the number of $\sigma \in S_n$ satisfying these three state-ements is 2^{n-1}.

3.2 Solution

[...]

4 Exercise 4

4.1 Problem

Let $n \geq 2$, and set $S = [n]$. Let $i \in [n-1]$. Prove that:

(a) The number of maps $f : S \to S$ with $f(i) = n$ and $f^n(S) = \{n\}$ is $2n^{n-3}$.

(b) Let $j \in [n-1]$ be such that $i \neq j$. The number of maps $f : S \to S$ with $f(i) = j$ and $f^n(S) = \{n\}$ is n^{n-3}.

[Hint: Substitute appropriate numbers for the variables in the Matrix-Tree Theorem.]

4.2 Solution

[...]
5 Exercise 5

5.1 Problem

(a) For each $n \in \mathbb{N}$, prove that the number of fixed-point-free involutions $[n] \rightarrow [n]$ is

\[
\begin{cases}
 1 \cdot 3 \cdot 5 \cdots (n-1), & \text{if } n \text{ is even;} \\
 0, & \text{if } n \text{ is odd.}
\end{cases}
\]

(b) For each $n \in \mathbb{N}$, we let t_n be the number of all involutions in S_n. Prove that

\[
t_n = \sum_{k=0}^{n} \binom{n}{2k} (1 \cdot 3 \cdot 5 \cdots (2k-1))
\]

for each $n \in \mathbb{N}$.

(c) For each $n \in \mathbb{N}$, prove that the number of maps $f : [n] \rightarrow [n]$ satisfying $f^3 = f$ is

\[
\sum_{k=0}^{n} \binom{n}{k} k^{n-k} k!.
\]

5.2 Remark

The numbers in part (a) form the sequence A123023 in the OEIS (And if you omit the terms for odd n, which are all zero, then you obtain sequence A001147, known as the double factorials.)

The numbers t_0, t_1, t_2, \ldots in part (b) are sometimes called the telephone numbers, because an involution in S_n is a way how phone calls can be happening between n people $1, 2, \ldots, n$, assuming there are no conference calls. This is sequence A000085 in the OEIS.

Finally, the numbers in part (c) form sequence A060905.

5.3 Solution

[...]

6 Exercise 6

6.1 Problem

Let n be a positive integer, and let $p \in \{0, 1, \ldots, n\}$.

A permutation $\sigma \in S_n$ shall be called a p-desarrangement if it satisfies

either $\sigma = \text{id}$ and $2 \mid n$ or $\sigma(1) \leq p$ or $\sigma \neq \text{id}$ and $2 \mid \min (\Des \sigma)$.

(The condition $2 \mid \min (\Des \sigma)$ means that the smallest descent of σ is even.\footnote{This is well-defined, since $\sigma \neq \text{id}$ shows that σ has at least one descent. Further p-desarrangements are id when n is even, and all permutations starting with a number $\leq p$ (in one-line notation).} This is well-defined, since $\sigma \neq \text{id}$ shows that σ has at least one descent. Further p-desarrangements are id when n is even, and all permutations starting with a number $\leq p$ (in one-line notation).)

Prove that the number of p-desarrangements in S_n is

\[
\sum_{k=0}^{n-p} \binom{n-p}{k} \cdot (-1)^k (n-k)!.
\]
6.2 Remark

This number is exactly the number of p-derangements in S_n, as defined in Exercise 5 of midterm #1. This suggests the existence of a bijection between the p-derangements and the p-derangements. Such a thing has indeed been found in the case when $p = 0$. In this case, the 0-derangements are known as desarrangements (a pun on the name and the word “derangement”), whereas the 0-derangements are precisely the derangements. The desarrangements are just the permutations $\sigma \in S_n$ satisfying either $\sigma = id$ or $(\sigma \neq id$ and $2 \mid \min (\text{Des} \sigma))$. One known bijection between the derangements and the desarrangements proceeds as follows:

- Let $\sigma \in S_n$ be a derangement. We want to define the corresponding desarrangement $F(\sigma)$.
- Compute the disjoint cycle decomposition of σ, and write it in such a way that each cycle contains its largest entry in its second position, and that the cycles are ordered in increasing order of their largest entries. That is, write

 $$\sigma = \text{cyc}_{a_1,1,a_1,2,\ldots,a_1,n_1}\text{cyc}_{a_2,1,a_2,2,\ldots,a_2,n_2}\ldots\text{cyc}_{a_k,1,a_k,2,\ldots,a_k,n_k},$$

 where each of the numbers $1, 2, \ldots, n$ appears exactly once among the $a_{i,j}$, and where

 $$a_{i,2} \geq a_{i,j} \quad \text{for all } i \text{ and } j, \quad \text{and} \quad a_{1,2} < a_{2,2} < \cdots < a_{k,2}.$$

- Now, let $F(\sigma)$ be the permutation whose one-line notation is

 $$(a_{1,1}, a_{1,2}, \ldots, a_{1,n_1}, a_{2,1}, a_{2,2}, \ldots, a_{2,n_2}, \ldots, a_{k,1}, a_{k,2}, \ldots, a_{k,n_k}).$$

For example, if $n = 7$ and $\sigma = [5, 3, 7, 6, 1, 4, 2]$ in one-line notation, then the appropriate representation of σ is $\sigma = \text{cyc}_{1,5}\text{cyc}_{4,6}\text{cyc}_{3,7,2}$ and thus $F(\sigma) = [1, 5, 4, 6, 3, 7, 2]$ in one-line notation.

It is far from trivial to check that this is actually a well-defined bijection. I don’t know if anything like that exists for $p \neq 0$. Feel free to explore. (But the simplest way to solve the exercise is not by bijection.)

6.3 Solution

[...]

underline marking the position of the smallest descent):

$$[1, 2, 3, 5, 4], \quad [1, 2, 4, 5, 3], \quad [1, 3, 2, 4, 5], \quad [1, 3, 2, 5, 4], \quad [1, 3, 4, 5, 2],$$

$$[1, 4, 2, 3, 5], \quad [1, 2, 5, 3], \quad [1, 4, 3, 2, 5], \quad [1, 4, 3, 5, 2], \quad [1, 5, 2, 3, 4],$$

$$[1, 5, 2, 4, 3], \quad [1, 5, 3, 2, 4], \quad [1, 5, 3, 4, 2], \quad [1, 5, 4, 2, 3], \quad [1, 5, 4, 3, 2],$$

$$[2, 3, 1, 4, 5], \quad [2, 3, 1, 5, 4], \quad [2, 3, 4, 5, 1], \quad [2, 4, 1, 3, 5], \quad [2, 4, 1, 5, 3],$$

$$[2, 4, 3, 1, 5], \quad [2, 4, 3, 5, 1], \quad [2, 5, 1, 3, 4], \quad [2, 5, 1, 4, 3], \quad [2, 5, 3, 1, 4],$$

$$[2, 5, 3, 4, 1], \quad [2, 5, 4, 1, 3], \quad [2, 5, 4, 3, 1], \quad [3, 4, 1, 2, 5], \quad [3, 4, 1, 5, 2],$$

$$[3, 4, 2, 1, 5], \quad [3, 4, 2, 5, 1], \quad [3, 5, 1, 2, 4], \quad [3, 5, 1, 4, 2], \quad [3, 5, 2, 1, 4],$$

$$[3, 5, 2, 4, 1], \quad [3, 5, 4, 1, 2], \quad [3, 5, 4, 2, 1], \quad [4, 5, 1, 2, 3], \quad [4, 5, 1, 3, 2],$$

$$[4, 5, 2, 1, 3], \quad [4, 5, 2, 3, 1], \quad [4, 5, 3, 1, 2], \quad [4, 5, 3, 2, 1].$$
REFERENCES

The numbering of theorems and formulas in this link might shift when the project gets updated; for a “frozen” version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.