Exercise 1. Let G be a simple graph. A triangle in G means a set $\{a,b,c\}$ of three distinct vertices $a,b,$ and c of G such that $ab,bc,$ and ca are edges of G. An antitriangle in G means a set $\{a,b,c\}$ of three distinct vertices $a,b,$ and c of G such that none of $ab,bc,$ and ca is an edge of G. A triangle-or-antitriangle in G is a set that is either a triangle or an antitriangle.

(a) Assume that $|V(G)| \geq 6$. Prove that G has at least two triangle-or-antitriangles.

Proof: To begin, assume, without loss of generality, that $|V(G)| = 6$, and note that there are $\binom{6}{3} = 20$ unordered triples of vertices in G. We wish to count the number of ordered triples (a,b,c) such that $ab \in E(G)$ and $bc \notin E(G)$. Observe that each vertex v has $\deg v = 0, 1, 2, 3, 4,$ or 5. If $\deg v$ is 0 or 5, then v is the second vertex in 0 such triples. If $\deg v$ is 1 or 4, then v is the second vertex in 4 such triples. If $\deg v$ is 2 or 3, then v is the second vertex in 6 such triples. Thus, there are at most 36 such ordered triples. Note that each unordered triple of vertices that does not form a triangle-or-antitriangle corresponds to two such ordered triples, so at most 18 unordered triples of vertices do not form triangle-or-antitriangles, so there are at least two triangle-or-antitriangles in G.

(b) Assume that $|V(G)| = m + 6$ for some $m \in \mathbb{N}$. Prove that G has at least $m + 1$ triangle-or-antitriangles.

Proof: Let $V(G) = \{v_1,v_2,...,v_6,u_1,...,u_m\}$. Now, take $\{v_1,...,v_6\}$. By the above, we can find at least one triangle-or-antitriangle among these six vertices. Suppose, without loss of generality, that this triangle-or-antitriangle includes v_1. Then, we take the vertices $\{v_2,...,v_6,u_1\}$. Again, there is at least one triangle-or-antitriangle among these six vertices, and since v_1 is not included, this triangle-or-antitriangle must be distinct from the one found previously. By repeating this process of finding a triangle-or-antitriangle, removing one of its vertices, and replacing it by one of the u_k, we find at least one new triangle-or-antitriangle for each of $\{u_1,...,u_m\}$, plus one in which none of the u_k were used.
Thus, we find \(m + 1 \) triangle-or-antitriangles. ■

Exercise 2. Let \(G \) be a simple graph. Let \(n = |V(G)| \) be the number of vertices of \(G \). Assume that \(|E(G)| < \frac{n(n-2)}{4} \). Prove that there exist three distinct vertices \(a, b, \) and \(c \) of \(G \) such that none of \(ab, bc, \) and \(ca \) are edges of \(G \).

Proof: Suppose that for all distinct \(a, b, c \in V(G) \), at least one of \(ab, bc, ca \) \(\in E(G) \). Then the complement \(\overline{G} \) of \(G \) is a graph with no triangles. We know \(|E(\overline{G})| = \frac{n(n-1)}{2} - |E(G)| \), so that \(|E(G)| = \frac{n(n-1)}{2} - |E(\overline{G})| \). But by Mantel’s theorem we know \(|E(G)| \leq \frac{n^2}{4} \) (since \(\overline{G} \) has no triangles), and thus \(|E(G)| = \frac{n(n-1)}{2} - |E(\overline{G})| \geq \frac{n(n-1)}{2} - \frac{n^2}{4} = \frac{n(n-2)}{4} \). Thus, if \(|E(G)| < \frac{n(n-2)}{4} \), then there exist \(a, b, c \in V(G) \) such that \(ab, bc, ca \notin E(G) \). ■

Exercise 3. Let \(G \) be a simple graph. Let \(w \) be a path in \(G \). Prove that the edges of \(w \) are distinct.

Proof: Let \(\{v_0, v_1, ..., v_k\} \) be the vertices of \(w \). Since \(w \) is a path, its vertices are distinct. Now, the edges of \(w \) are \(\{v_i, v_{i+1} \mid 0 \leq i \leq k-1\} \). Note that two edges \(pq \) and \(rs \) are the same only when \(p = r \) and \(q = s \) or \(p = s \) and \(q = r \), i.e. if they connect the same pair of vertices. Now, each vertex \(v_i \) in \(w \) is connected to at most two edges in \(w \), but these two edges must be distinct because the vertices \(v_{i-1} \) and \(v_{i+1} \) are distinct. ■

Exercise 4. Let \(n \in \mathbb{N} \). What is the smallest possible size of a dominating set of the cycle graph \(C_{3n} \)?

The smallest possible size of a dominating set of \(C_{3n} \) is \(n \).

Proof: Let the vertices of \(C_{3n} \) be \(\{v_1, v_2, ..., v_{3n}\} \). We observe that since each vertex in \(C_{3n} \) has 2 neighbors, no three consecutive vertices can be excluded from a dominating set. Then, if we pick vertices such that every third vertex is in our dominating set, we have the set \(\{v_3, v_6, ..., v_{3n}\} \), which has \(n \) vertices. ■

Exercise 5. Proposition 0.2 (a) If \(A \) and \(B \) are two equivalent logical statements, then \(|A| = |B| \).

(b) If \(A \) is any logical statement, then \(|\text{not} \ A| = 1 - |A| \).

(c) If \(A \) and \(B \) are two logical statements, then \(|A \land B| = |A||B| \).
If \(A \) and \(B \) are two logical statements, then \([A \lor B] = [A] + [B] - [A][B]\).

Proposition 0.3 Let \(P \) be a finite set. Let \(Q \) be a subset of \(P \).

(a) Then,

\[
|Q| = \sum_{p \in P} [p \in Q].
\]

(b) For each \(p \in P \), let \(a_p \) be a number. Then,

\[
\sum_{p \in P} [p \in Q] a_p = \sum_{p \in Q} a_p.
\]

(c) For each \(p \in P \), let \(a_p \) be a number. Let \(q \in P \). Then,

\[
\sum_{p \in P} [p = q] a_p = a_q.
\]

(a) Prove Proposition 0.2.

Proof of (a): If \(A \) and \(B \) are equivalent logical statements, then \(A \) is true if and only if \(B \) is true. Thus, \([A] = [B]\). ■

Proof of (b): If \([A] = 1\), then \([\neg A] = 0 = 1 - 1\). If \([A] = 0\), then \([\neg A] = 1 = 1 - 0\). ■

Proof of (c): If \([A] = [B] = 1\), \([A \land B] = 1 = [A][B]\). If \([A] = 0\) or \([B] = 0\), then \([A \land B] = 0 = [A][B]\). ■

Proof of (d): If \([A] = [B] = 0\), \([A \lor B] = 0 = [A] + [B] - [A][B]\). If \([A] = 1\) or \([B] = 1\), then \([A \lor B] = 1 = [A] + [B] - [A][B]\). ■

(b) Prove Proposition 0.3.

Proof of (a):

\[
\sum_{p \in P} [p \in Q] = \sum_{p \in Q} [p \in Q] + \sum_{p \in P \setminus Q} [p \in Q] = \sum_{p \in Q} 1 + \sum_{p \in P \setminus Q} 0 = \sum_{p \in Q} 1 = |Q|. ■
\]

Proof of (b):

\[
\sum_{p \in P} [p \in Q] a_p = \sum_{p \in Q} [p \in Q] a_p + \sum_{p \in P \setminus Q} [p \in Q] a_p = \sum_{p \in Q} a_p. ■
\]
Proof of (c):
\[
\sum_{p \in P} [p = q]a_p = \sum_{p \neq q} 0 + \sum_{p = q} a_p = a_q. \blacksquare
\]

(c) Now, let \(G\) be a simple graph. Prove that
\[
\deg v = \sum_{u \in V(G)} [uv \in E(G)]
\]
for each vertex \(v\) of \(G\).

Proof: Let \(A \subset V(G)\) be the set of neighbors of \(v\). Then,
\[
\deg v = |A| = \sum_{u \in V(G)} [u \in A].
\]
Now, \(u \in A\) is equivalent to \(uv \in E(G)\), so
\[
\sum_{u \in V(G)} [u \in A] = \sum_{u \in V(G)} [uv \in E(G)]. \blacksquare
\]

(d) Prove that
\[
2|E(G)| = \sum_{u \in V(G)} \sum_{v \in V(G)} [uv \in E(G)].
\]

Proof:
\[
2|E(G)| = \sum_{v \in V(G)} \deg v = \sum_{v \in V(G)} \sum_{u \in V(G)} [uv \in E(G)]. \blacksquare
\]

Exercise 6. Let \(k\) be a positive integer. Let \(G\) be a graph. A subset \(U\) of \(V(G)\) will be called \(k\)-path-dominating if for every \(v \in V(G)\), there exists a path of length \(\leq k\) from \(v\) to some element of \(U\). Prove that the number of all \(k\)-path-dominating subsets of \(V(G)\) is odd.

Proof: Consider the case of the 1-path-dominating subsets. As was proven by Brouwer, the number of such subsets is odd in any graph. Now, construct the graph \(G_k\) by adding to \(G\) edges between any two vertices that are connected by a path of length \(\leq k\) in \(G\). Then, a dominating set of \(G_k\) is a \(k\)-path-dominating subset of \(G\), and \(G_k\) must have an odd number of dominating sets. \(\blacksquare\)

Exercise 7. Let \(G\) be a simple graph with \(V(G) \neq \emptyset\). Show that the following two statements are equivalent:

\[4\]
Statement 1: The graph G is connected.

Statement 2: For every two nonempty subsets A and B of $V(G)$ satisfying $A \cap B = \emptyset$ and $A \cup B = V(G)$, there exist $a \in A$ and $b \in B$ such that $ab \in E(G)$.

Proof: First, we prove that Statement 1 implies Statement 2. Assume G is connected. Since G is connected, there exists a path between any pair of vertices $\alpha, \beta \in V(G)$. Let such a path be $(\alpha, v_1, \ldots, v_k, \beta)$. Without loss of generality, suppose $V(G)$ is divided into A and B such that $\alpha \in A$ and $\beta \in B$. Then, since the above path begins with a vertex in A and ends with a vertex in B, it must have at least one edge connecting some $a \in A$ and $b \in B$. Now, to show Statement 2 implies statement 1, suppose G is not connected, and that for every two nonempty subsets A and B of $V(G)$ satisfying $A \cap B = \emptyset$ and $A \cup B = V(G)$, there exist $a \in A$ and $b \in B$ such that $ab \in E(G)$.

Since G is not connected, there exist vertices α and β such that no path exists from α to β. Then, we attempt to construct the sets A and B by defining $A = \{ v \in V(G) \mid a \text{ path from } \alpha \text{ to } v \text{ exists}\}$ and $B = V(G) \setminus A$. Now, $\beta \in B$ since no path connects α to β, but since Statement 2 was assumed, there is an edge connecting β to a vertex in A, a contradiction. Hence, the above statements are equivalent. ■

Exercise 8. Let V be a nonempty finite set. Let G and H be two simple graphs such that $V(G) = V(H) = V$. Assume that for each $u, v \in V$, there exists a path from u to v in G or a path from u to v in H. Prove that at least one of the graphs G and H is connected.

Proof: Without loss of generality, assume G is not connected. Then, fix a vertex $u \in V$. We can divide V into two nonempty subsets: $A = \{ v \in V(G) \mid a \text{ path from } u \text{ to } v \text{ exists}\}$ and $B = V \setminus A$. Now, since no paths connecting elements of A to elements of B exist in G, for all $a \in A, b \in B$ a path from a to b exists in H. Then, for any $a_1, a_2 \in A$ (or $b_1, b_2 \in B$), a path from a_1 to a_2 (or b_1 to b_2) exists in H since such a path can be constructed from the paths connecting a_1 and a_2 to any element of B (or b_1 and b_2 to any element of A). Thus, H is connected. ■

Exercise 9. Let $G = (V, E)$ be a simple graph. The complement graph \overline{G} of G is defined to be the simple graph $(V, P_2(V) \setminus E)$. (Thus, two vertices u and v are adjacent in \overline{G} if and only if they are not adjacent in G.) Prove that at least one of the following statements holds:

Statement 1: For each $u \in V$ and $v \in V$, there exists a path from u to v in G of length ≤ 3.

5
Statement 2: For each $u \in V$ and $v \in V$, there exists a path from u to v in \overline{G} of length ≤ 2.

Proof: It is sufficient to show that when Statement 1 is false, Statement 2 holds. Thus, assume there exist $u, v \in V$ such that there is no path from u to v in G of length ≤ 3. Then, u and v are adjacent in \overline{G}. We must show that for each pair (a, b) of vertices, there exists a path of length ≤ 2 between a and b in \overline{G}. If the two vertices are not adjacent in G, this is trivial (since they are then adjacent in \overline{G}). Now, let $a, b \in V$ be a pair of adjacent vertices in G. Then, none of the paths\(^1\) $(u, a, b, v), (u, b, a, v), (u, a, v)$, and (u, b, v) exist in G (by our assumption on u and v). Hence, we can assume without loss of generality that $ua, ub \notin E(G)$, which implies $ua, ub \in E(\overline{G})$. Hence, the path (a, u, b) of length 2 exists in \overline{G}. Therefore, Statement 2 holds whenever Statement 1 is false, so at least one of the two statements holds. ■

\(^1\)Some of the vertices u, a, b, v might coincide. In this case, you should ignore them. For instance, you should read the path (u, a, b, v) as (u, a, v) in the case when $b = v$.

6