Def. Let G be a connected graph.

(see [Gelman].)

\[
\frac{i(T - 1)}{n - 2} \leq \frac{i_1(T - 1)}{n_1 - 2} + \cdots + \frac{i_n(T - 1)}{n_n - 2}
\]

with vertex set $I = \{1, 2, \ldots, n\}$. Then, the # of these
with $d_1 + d_2 + \cdots + d_n = 2(n - 1)$.

If $G_{i_1, d_1}, G_{i_2, d_2}, \ldots, G_{i_n, d_n}$ be n nonempty
 \[(n - 2)! \]

edges from G such that G is a tree (informally).

A spanning tree of G is a way to remove

but also

has spanning tree

Example:

(see [Gelman].)
Theorem 1.2: \(\Delta \) graphs have \(\Delta \) spanning trees.

Theorem 1.3: Any connected graph \(G \) has a spanning tree.

\(K_n = ([n], \theta ([n])) \).

For each \(n \geq 2 \), consider the complete graph \(K_n \).

Then, the \# of spanning trees of \(G \) is \(\Delta \).

\[\frac{n-1}{2} \]

Let \(G \) be a connected graph with \(n \) vertices. If \(G \) is complete, then \(G \) is a spanning tree.

\[n \in \mathbb{Z}^+ \]

Example: For each \(n \geq 2 \), consider the complete graph \(K_n \).

Then, the \# of spanning trees of \(G \) is \(\Delta \).

\[\frac{n-1}{2} \]

Theorem 1.2: \(\Delta \) graphs have \(\Delta \) spanning trees.

Theorem 1.3: Any connected graph \(G \) has a spanning tree.

\(K_n = ([n], \theta ([n])) \).

For each \(n \geq 2 \), consider the complete graph \(K_n \).

Then, the \# of spanning trees of \(G \) is \(\Delta \).

\[\frac{n-1}{2} \]

Let \(G \) be a connected graph with \(n \) vertices. If \(G \) is complete, then \(G \) is a spanning tree.

\[n \in \mathbb{Z}^+ \]

Example: For each \(n \geq 2 \), consider the complete graph \(K_n \).

Then, the \# of spanning trees of \(G \) is \(\Delta \).

\[\frac{n-1}{2} \]
Elementary linear algebra says that \(\det L = u - 2 \),

\[
\begin{pmatrix}
1 & u - 2 & \\
1 & 1 & u - 2 \\
1 & 1 & u - 2 \\
\end{pmatrix}
\]

where \(\det L = 7 \).
If \(G \) has no Eulerian circuit, then either of the vertices with odd degrees.

A circuit is an Eulerian graph.

Given a graph \(G = (V, E) \), an Eulerian circuit of \(G \) exists if and only if every vertex in \(G \) has an even degree.
(c) If $G = \begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (1,1) {c};
\node (d) at (0,1) {d};
\node (e) at (0.5,0.5) {e};
\node (f) at (1.5,0.5) {f};
\node (g) at (2,1) {g};
\node (h) at (1.5,1) {h};
\draw (a) -- (d);
\draw (b) -- (c);
\draw (a) -- (e);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (d) -- (f);
\draw (a) -- (g);
\draw (b) -- (c);
\draw (c) -- (g);
\draw (d) -- (f);
\draw (e) -- (h);
\draw (f) -- (h);
\draw (g) -- (h);
\end{tikzpicture}$

then G has no Eulerian circuit.

But $\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (1,1) {c};
\node (d) at (0,1) {d};
\node (e) at (0.5,0.5) {e};
\node (f) at (1.5,0.5) {f};
\node (g) at (2,1) {g};
\node (h) at (1.5,1) {h};
\draw (a) -- (d);
\draw (b) -- (c);
\draw (a) -- (e);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (d) -- (f);
\draw (a) -- (g);
\draw (b) -- (c);
\draw (c) -- (g);
\draw (d) -- (f);
\draw (e) -- (h);
\draw (f) -- (h);
\draw (g) -- (h);
\end{tikzpicture}$

does.

Thm. 13 (Euler & Hierholzer).

Let G be a connected Eulerian circuit if and only if each vertex of G has even degree.

Ex: $\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (1,1) {c};
\node (d) at (0,1) {d};
\node (e) at (0.5,0.5) {e};
\node (f) at (1.5,0.5) {f};
\node (g) at (2,1) {g};
\node (h) at (1.5,1) {h};
\draw (a) -- (d);
\draw (b) -- (c);
\draw (a) -- (e);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (d) -- (f);
\draw (a) -- (g);
\draw (b) -- (c);
\draw (c) -- (g);
\draw (d) -- (f);
\draw (e) -- (h);
\draw (f) -- (h);
\draw (g) -- (h);
\end{tikzpicture}$

← this has no Euler circuit.

$\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (1,1) {c};
\node (d) at (0,1) {d};
\node (e) at (0.5,0.5) {e};
\node (f) at (1.5,0.5) {f};
\node (g) at (2,1) {g};
\node (h) at (1.5,1) {h};
\draw (a) -- (d);
\draw (b) -- (c);
\draw (a) -- (e);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (d) -- (f);
\draw (a) -- (g);
\draw (b) -- (c);
\draw (c) -- (g);
\draw (d) -- (f);
\draw (e) -- (h);
\draw (f) -- (h);
\draw (g) -- (h);
\end{tikzpicture}$

← this one has.
7.7. **BIPARTITE GRAPHS & HALL'S THM.**

Def. A bipartite graph is a triple \((G; X, Y)\), where \(G = (V, E)\) is a simple graph, \(X\) and \(Y\) are two subsets of \(V\) such that:

- \(X \cup Y = V\), \(X \cap Y = \emptyset\);
- each edge \(e \in E\) has exactly one endpoint in \(X\) & exactly one endpoint in \(Y\).

Ex:

\[\begin{array}{c}
\text{X} \\
\text{Y}
\end{array}\]
A matching in a graph G is a set of disjoint edges of G.

Let S be a set of vertices of a graph G, let M be a matching in G, and say that M is S-complete if each vertex in S is contained in a matching in G.

Examples:

If $G = \{1, 2, 3, 4, 5\}$, then $\{1\}$ is a matching, but $\{\{2, 3\}\}$ is not.

If $G = \{1, 2, 3, 4, 5\}$, then $\{2, 3, 3\}$ is a matching, $\{1, 4, 2\}$ is not.

$\{1, 4, 2, 3, 4, 3, 3\}$ is a matching.
For an elementary proof, see [Lecture, Thm 4.2].

where $V = \{v_1, v_2, \ldots, v_n\}$.

Then, $|N(v)| \geq \frac{n}{2}$, where $N(v) = \{u \in V \mid v \neq u\}$ has a

neighbor in V. Let (G, X, Y) be a bipartite graph. Then, X-complete matching M is

if and only if each subset $U \subseteq X$ satisfies

Thm. 14 ("Hall's marriage theorem").

Let (G, X, Y) be a

No, because the 3 vertices $2, 3, 4$ have only 2 edges.

Does G have a X-complete matching?

\[G = \]

Ex.
\[u \rightarrow v \] is the target of \(u \). Let \(\text{hw} \) as \(u \rightarrow v \) if \(u \in A \) with \(\text{hw}(u) = (v, a) \), then \(u \) is the source of \(v \), and if \(\text{hw}(u) \) is the set of \(v \), an edge \(u \rightarrow v \) is the edge of \(A \).

The vertices of the multigraph \((V, A, p)\) are the sets of \(V \).

A multigraph \((V, A, p)\) is a tuple \((V, A, p)\) where \(V \) and \(A \) are finite sets and \(p: A \rightarrow V \times V \).

Let \(G \) be a directed graph, then \(G \). Directed graphs are multigraphs.
The in-degree of a node in the graph is the number of arcs with target v.

The out-degree of a node in a directed graph is the number of arcs with source v.

Def. Let v be a vertex of a directed graph G.

Simple directed graphs are similar to partial (v, A) with A = V x V.

Allow loops (opps!), whereas we.

Example:
(a) A circuit \((v_0, a_1, v_1, a_2, v_2, \ldots, a_{k-1}, v_k, a_k, v_0)\) is a cycle if \(v_0, v_1, \ldots, v_k\) are distinct, \(k \geq 1\).

(b) A walk from \(v_0\) to \(v_k\) is called a path if \(v_0, v_1, \ldots, v_k\) are distinct.

(c) \(d(v, a) = (v \to a, \infty)\), \(\infty = p, n = 9\).

(d) \(\omega = (a_0, a_1, a_2, \ldots)\), where \(\omega\) is a walk from \(v_0\) to \(v_k\).

(e) \(\omega = (v_0, a_1, v_1, a_2, v_2, \ldots)\) is a multigraph.

(f) \(\omega = (v_0, a_1, v_1, a_2, v_2, \ldots)\) is a multigraph.

(g) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(h) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(i) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(j) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(k) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(l) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(m) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(n) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(o) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(p) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(q) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(r) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(s) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(t) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(u) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(v) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(w) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(x) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(y) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(z) \(\omega = (v_0, a_1, v_1)\) is a multigraph.

(\(\square\))
To Hall's Marriage Theorem, remark that there is an application of digraphs.

For Math 550 notes (lec. 16, Spring 2017) for each vertex $i \in I$ has degree $d_i = d_{-i}$.

Only if each vertex in E has degree ≥ 0.

3 walk $u \rightarrow v$. Then, I has an Eulerian circuit $I \in$ strongly connected graph. ("Strongly connected" means Auv, see

Thm. 2. (Euler - Hierholzer). Let G be a strongly connected

circuit that contains each arc exactly once. I and G to G. 13.

In Eulerian circuit in a multigraph is
Proposition.

If \(G \) is not 2-colorable, then \(\chi(G) \geq 3 \).

Examples:

If \(G = \chi(G) = 3 \),

we have \(f(a) \neq f(b) \) for vertices that have the same color \((i.e., f(a) \neq f(b)) \).

4-coloring of \(G \) is called proper if no two adjacent

4-color of \(a \) in \(f \),

If \(f \) is a 4-coloring \(\chi(G) \leq 4 \), then \(f(a) \neq f(b) \) whenever the

4-coloring of \(G \) is a map \(\chi \). \(\chi \) is a map \(\chi \). Let \(P \in \Gamma \) be a polynomial.

Let \(G = (V, E, \chi) \) be a multigraph. Let \(P \in \mathbb{N} \),

ON COLORINGS OF GRAPHIC POLYNOMIALS.
Replace 4 by 3.
3-coloring:
To start a proof 4-coloring.

"perfection graph"
Prop 2. Let \(G = (V, E) \) be a simple graph. "Greedy coloring" works: color vertices \(V \) by 4.

Then, \(G \) has a proper \((d+4)\)-coloring.

Let \(d = \max \) degree of a vertex of \(G \),

Prop 1. Let \(G = (V, E') \) be a multigraph.

\[\text{if } G \text{ has a proper } 2\text{-coloring, then } G \text{ has no odd-length cycles.} \]

\[\Rightarrow \text{ if } G \text{ has } \# \text{ of component components of } G = 2, \text{ then } \]

\[\Rightarrow \text{ if } G \text{ has no odd-length circuits.} \]
letters in G. p_n is the n-th prime (i.e., $\sum_{i=0}^{n} p_i$).

What is $X_e(p)$? p_i is the i-th prime. The proper p-coloring

$n, n-1, n-2, \ldots$.

Remark: If $p \geq 2$,

X_e is called the chromatic polynomial of G.

This X_e is itself.

Let $G = \{v \in V, (v, e) \in E\}$ be a multigraph

$X_e = \sum_{k=0}^{\text{max degree}} X^k(p)$.\hspace{1cm} \text{(Proof: see Exercise 4 on Spring 2017 Math 540 MT 2.)}$

\begin{equation}
X_e = \sum_{k=0}^{\text{max degree}} X^k(p) \hspace{1cm} \text{(Proof: see Exercise 4 on Spring 2017 Math 540 MT 2.)}
\end{equation}

\begin{align*}
\text{For every } G \in \mathcal{G}_n^{\text{proper}}, \quad X_e = \sum_{k=0}^{\text{max degree}} X^k(p).\hspace{1cm} \text{(Proof: see Exercise 4 on Spring 2017 Math 540 MT 2.)}
\end{align*}

Then there exists a unique polynomial $X_e \in \mathbb{Z}[x]$.

Thm. 3. Let $G = (V, E, p)$ be a multigraph.
(a) If \(e \in E \) then \(x_6 \in x_5v \).

(b) If \(x_5v \) is the only edge connecting the endpoints of \(e \),

then \(x_6 = x_5v \). Let \(G \in E \) with \(e \) collapsed.

Let \(G' \in E \) with \(e \) removed.

Let \(G = (V, E', p) \) be a multigraph.

Then, \(G' \) (d/c recurrence).

What is \(x_6 \)?

These are the numbered variables.