0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let $n \in \mathbb{N}$. Let S be a finite set. Let A_1, A_2, \ldots, A_n be finite subsets of S. Let $k \in \mathbb{N}$. Let S_k be the set of all elements of S that belong to exactly k of the subsets A_1, A_2, \ldots, A_n. (In other words, let $S_k = \{ s \in S \mid$ the number of $i \in [n]$ satisfying $s \in A_i$ equals $k \}.$) Prove that

$$|S_k| = \sum_{I \subseteq [n]} (-1)^{|I|-k} \left(\frac{|I|}{k} \right) \left| \bigcap_{i \in I} A_i \right|. $$

Note that the principle of inclusion and exclusion (see, e.g., [Galvin17, §16]) is the particular case of Exercise 1 for $k = 0$ (since $S_0 = S \setminus \bigcup_{i=1}^n A_i$).

0.2. Summing fixed point numbers of permutations

Recall that for any $n \in \mathbb{N}$, we let S_n denote the set of all permutations of $[n]$.

If S is a finite set, and if $f : S \rightarrow S$ is a map, then we let $	ext{Fix } f$ denote the set of all fixed points of f. (That is, $	ext{Fix } f = \{ s \in S \mid f(s) = s \}.$)

Exercise 2. Let n be a positive integer. Prove that $\sum_{w \in S_n} |\text{Fix } w| = n!$.

[Hint: Rewrite $|\text{Fix } w|$ as $\sum_{i \in [n]} [w(i) = i]$.]

(In other words, this exercise states that the average number of fixed points of a permutation of $[n]$ is 1.)

0.3. Transpositions $t_{i,j}$ generate permutations

Recall a basic notation regarding permutations:

Definition 0.1. Let $n \in \mathbb{N}$. Let i and j be two distinct elements of $[n]$. We let $t_{i,j}$ be the permutation in S_n which switches i with j while leaving all other elements of $[n]$ unchanged. Such a permutation is called a transposition.

Exercise 3. Let $n \in \mathbb{N}$. Prove that each permutation in S_n can be written as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

(Note that this composition can be empty – in which case it is understood to be id –, and it can contain any given transposition multiple times.)
You are allowed to use the well-known fact ([Grinbe16, Exercise 5.1 (b)]) that each permutation in S_n can be written as a composition of some of the transpositions $s_1, s_2, \ldots, s_{n-1}$, where s_i is defined to be $t_{i,i+1}$.

0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.2. Let X be a set. Let k be a positive integer. Let i_1, i_2, \ldots, i_k be k distinct elements of X. We define $\text{cyc}_{i_1,i_2,\ldots,i_k}$ to be the permutation of X that sends i_1, i_2, \ldots, i_k to $i_2, i_3, \ldots, i_k, i_1$, respectively, while leaving all other elements of X fixed. In other words, we define $\text{cyc}_{i_1,i_2,\ldots,i_k}$ to be the permutation of X given by

$$\text{cyc}_{i_1,i_2,\ldots,i_k}(p) = \begin{cases} i_{j+1}, & \text{if } p = i_j \text{ for some } j \in \{1,2,\ldots,k\}; \\ p, & \text{otherwise} \end{cases}$$

for every $p \in X$, where i_{k+1} means i_1.

Exercise 4. Let $n \in \mathbb{N}$. For each $r \in [n]$, let c_r denote the permutation $\text{cyc}_{r,r−1,2,1} \in S_n$. (Thus, $c_1 = \text{cyc}_1 = \text{id}$ and $c_2 = \text{cyc}_2,1 = s_1$.) Let $G = \{g_1 < g_2 < \cdots < g_p\}$ be a subset of $[n]$. Let $\sigma \in S_n$ be the permutation $c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_p}$.

Prove the following:

(a) We have $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$.

(b) We have $\sigma([p]) = G$.

(c) We have $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$.

(Note that a chain of inequalities that involves less than two numbers is considered to be vacuously true. For example, Exercise 4(c) is vacuously true when $p = n − 1$ and also when $p = n$.)

Permutations $\sigma \in S_n$ satisfying the inequalities $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$ and $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$ for some $p \in \{0,1,\ldots,n\}$ are known as “V-permutations” (as their plot looks somewhat like the letter “V”: first decreasing for a while, then increasing). Can you guess how permutations $\sigma \in S_n$ satisfying $\sigma(1) < \sigma(2) < \cdots < \sigma(p)$ and $\sigma(p+1) > \sigma(p+2) > \cdots > \sigma(n)$ are called?

0.5. Lexicographic comparison of permutations

Definition 0.3. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ be a permutation. For any $i \in [n]$, we let $\ell_i(\sigma)$ denote the number of $j \in \{i+1, i+2, \ldots, n\}$ such that $\sigma(i) > \sigma(j)$.

For example, if σ is the permutation of $[5]$ written in one-line notation as $[4, 1, 5, 2, 3]$, then $\ell_1(\sigma) = 3$, $\ell_2(\sigma) = 0$, $\ell_3(\sigma) = 2$, $\ell_4(\sigma) = 0$ and $\ell_5(\sigma) = 0.$
Definition 0.4. Let $n \in \mathbb{N}$. Let (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) be two n-tuples of integers. We say that $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$ if and only if there exists some $k \in [n]$ such that $a_k \neq b_k$, and the smallest such k satisfies $a_k < b_k$.

For example, $(4, 1, 2, 5) <_{\text{lex}} (4, 1, 3, 0)$ and $(1, 1, 0, 1) <_{\text{lex}} (2, 0, 0, 0)$. The relation $<_{\text{lex}}$ is usually pronounced “is lexicographically smaller than”; the word “lexicographic” comes from the idea that if numbers were letters, then a “word” $a_1a_2\cdots a_n$ would appear earlier in a dictionary than $b_1b_2\cdots b_n$ if and only if $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$.

Exercise 5. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ and $\tau \in S_n$. Prove the following:

 (a) If $(\sigma (1), \sigma (2), \ldots, \sigma (n)) <_{\text{lex}} (\tau (1), \tau (2), \ldots, \tau (n))$, then $(\ell_1 (\sigma), \ell_2 (\sigma), \ldots, \ell_n (\sigma)) <_{\text{lex}} (\ell_1 (\tau), \ell_2 (\tau), \ldots, \ell_n (\tau))$.

 (b) If $(\ell_1 (\sigma), \ell_2 (\sigma), \ldots, \ell_n (\sigma)) = (\ell_1 (\tau), \ell_2 (\tau), \ldots, \ell_n (\tau))$, then $\sigma = \tau$.

0.6. Comparing subsets of $[n]$

If I and J are two finite sets of integers, then we write $I \leq_{\#} J$ if and only if the following two properties hold:

- We have $|I| \geq |J|$.
- For every $r \in \{1, 2, \ldots, |J|\}$, the r-th smallest element of I is \leq to the r-th smallest element of J.

For example, $\{2, 4\} \leq_{\#} \{2, 5\}$ and $\{1, 3\} \leq_{\#} \{2, 4\}$ and $\{1, 3, 5\} \leq_{\#} \{2, 4\}$. (But not $\{1, 3\} \leq_{\#} \{2, 4, 5\}$.)

 (a) For every subset S of $[n]$ and every $\ell \in [n]$, let $\alpha_S (\ell)$ denote the number of all elements of S that are $\leq \ell$. Prove that $I \leq_{\#} J$ holds if and only if every $\ell \in [n]$ satisfies $\alpha_I (\ell) \geq \alpha_J (\ell)$.

 (b) Prove that $I \leq_{\#} J$ if and only if $[n] \setminus J \leq_{\#} [n] \setminus I$.

Remark 0.5. Recall that we have defined a Dyck word as a list w of $2n$ numbers, exactly n of which are 0’s while the other n are 1’s, and having the property that for each $k \in [2n]$, the number of 0’s among the first k entries of w is \leq to the number of 1’s among the first k entries of w.

It is not hard to see the connection between the relation $\leq_{\#}$ and Dyck words:

Let $w = (w_1, w_2, \ldots, w_{2n}) \in \{0, 1\}^{2n}$ be a list of $2n$ numbers, exactly n of which are 0’s while the other n are 1’s. Then, w is a Dyck word if and only if

$$\{i \in [2n] \mid w_i = 1\} \leq_{\#} \{i \in [2n] \mid w_i = 0\}$$
(in other words, for every $r \in [n]$, the r-th appearance of 1 in w precedes the r-th appearance of 0 in w).

0.7. A rigorous approach to the existence of a cycle decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that any permutation can be decomposed into disjoint cycles.

Exercise 7. Let X be a finite set. Let σ be a permutation of X.

Define a binary relation \sim on the set X as follows: For two elements $x, y \in X$, we set $x \sim y$ if and only if there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$.

(a) Prove that \sim is an equivalence relation.

For any $x \in X$, we let $[x]_{\sim}$ denote the \sim-equivalence class of x.

(b) For any $x \in X$, prove that $[x]_{\sim} = \{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)\}$, where $k = |[x]_{\sim}|$.

(c) For any \sim-equivalence class E, let us define c_E to be the map

$$X \to X, \quad x \mapsto \begin{cases} \sigma(x), & \text{if } x \in E; \\ x, & \text{if } x \notin E. \end{cases}$$

Prove that c_E is a permutation of X.

(d) Prove that if $E = [x]_{\sim}$ for some $x \in X$, then c_E can be written as $\text{cyc}_{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)}$, where $k = |[x]_{\sim}|$. (Don’t forget to show that $\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)$ are distinct, so that $\text{cyc}_{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)}$ is well-defined.)

(e) Let E_1, E_2, \ldots, E_m be all \sim-equivalence classes (listed without repetitions – that is, $E_i \neq E_j$ whenever $i \neq j$). Prove that

$$\sigma = c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m}.$$
when the project gets updated; for a “frozen” version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2018-10-03.