Math 4990 Fall 2017 (Darij Grinberg): homework set 7

Due date: Tuesday 14 Nov 2017 at the beginning of class, or before that by email or moodle

Please solve at most 4 of the 7 exercises!

0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let \(n \in \mathbb{N} \). Let \(S \) be a finite set. Let \(A_1, A_2, \ldots, A_n \) be finite subsets of \(S \). Let \(k \in \mathbb{N} \). Let \(S_k \) be the set of all elements of \(S \) that belong to exactly \(k \) of the subsets \(A_1, A_2, \ldots, A_n \). (In other words, let \(S_k = \{ s \in S \mid \text{the number of } i \in [n] \text{ satisfying } s \in A_i \text{ equals } k \} \).) Prove that

\[
|S_k| = \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \left| \bigcap_{i \in I} A_i \right|.
\]

Note that the principle of inclusion and exclusion (see, e.g., [Galvin17, §16]) is the particular case of Exercise 1 for \(k = 0 \) (since \(S_0 = S \setminus \bigcup_{i=1}^n A_i \)).

0.2. Summing fixed point numbers of permutations

Recall that for any \(n \in \mathbb{N} \), we let \(S_n \) denote the set of all permutations of \([n]\).

If \(S \) is a finite set, and if \(f : S \rightarrow S \) is a map, then we let \(\text{Fix } f \) denote the set of all fixed points of \(f \). (That is, \(\text{Fix } f = \{ s \in S \mid f(s) = s \} \).)

Exercise 2. Let \(n \) be a positive integer. Prove that \(\sum_{w \in S_n} |\text{Fix } w| = n! \).

[Hint: Rewrite }|\text{Fix } w| \text{ as } \sum_{i \in [n]} [w(i) = i].

(In other words, this exercise states that the average number of fixed points of a permutation of \([n]\) is 1.)

0.3. Transpositions \(t_{i,j} \) generate permutations

Recall a basic notation regarding permutations:

Definition 0.1. Let \(n \in \mathbb{N} \). Let \(i \) and \(j \) be two distinct elements of \([n]\). We let \(t_{i,j} \) be the permutation in \(S_n \) which switches \(i \) with \(j \) while leaving all other elements of \([n]\) unchanged. Such a permutation is called a transposition.

Exercise 3. Let \(n \in \mathbb{N} \). Prove that each permutation in \(S_n \) can be written as a composition of some of the transpositions \(t_{1,2}, t_{1,3}, \ldots, t_{1,n} \).

(Note that this composition can be empty – in which case it is understood to be \(\text{id} \) –, and it can contain any given transposition multiple times.)
0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.2. Let X be a set. Let k be a positive integer. Let i_1, i_2, \ldots, i_k be k distinct elements of X. We define $\text{cyc}_{i_1, i_2, \ldots, i_k}$ to be the permutation of X that sends i_1, i_2, \ldots, i_k to $i_2, i_3, \ldots, i_k, i_1$, respectively, while leaving all other elements of X fixed. In other words, we define $\text{cyc}_{i_1, i_2, \ldots, i_k}$ to be the permutation of X given by

$$\text{cyc}_{i_1, i_2, \ldots, i_k}(p) = \begin{cases} i_{j+1}, & \text{if } p = i_j \text{ for some } j \in \{1, 2, \ldots, k\}; \\ p, & \text{otherwise} \end{cases}$$

for every $p \in X$,

where i_{k+1} means i_1.

Exercise 4. Let $n \in \mathbb{N}$. For each $r \in [n]$, let c_r denote the permutation $\text{cyc}_{r, r-1, 2, 1} \in S_n$. (Thus, $c_1 = \text{cyc}_1 = \text{id}$ and $c_2 = \text{cyc}_{2, 1} = s_1$.)

Let $G = \{g_1 < g_2 < \ldots < g_p\}$ be a subset of $[n]$. Let $\sigma \in S_n$ be the permutation $c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_p}$.

Prove the following:

(a) We have $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$.

(b) We have $\sigma([p]) = G$.

(c) We have $\sigma(p + 1) < \sigma(p + 2) < \cdots < \sigma(n)$.

(Note that a chain of inequalities that involves less than two numbers is considered to be vacuously true. For example, Exercise 4(c) is vacuously true when $p = n - 1$ and also when $p = n$.)

Permutations $\sigma \in S_n$ satisfying the inequalities $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$ and $\sigma(p + 1) < \sigma(p + 2) < \cdots < \sigma(n)$ for some $p \in \{0, 1, \ldots, n\}$ are known as “V-permutations” (as their plot looks somewhat like the letter “V”: first decreasing for a while, then increasing). Can you guess how permutations $\sigma \in S_n$ satisfying $\sigma(1) < \sigma(2) < \cdots < \sigma(p)$ and $\sigma(p + 1) > \sigma(p + 2) > \cdots > \sigma(n)$ are called?

0.5. Lexicographic comparison of permutations

Definition 0.3. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ be a permutation. For any $i \in [n]$, we let $\ell_i(\sigma)$ denote the number of $j \in \{i + 1, i + 2, \ldots, n\}$ such that $\sigma(i) > \sigma(j)$.

For example, if σ is the permutation of $[5]$ written in one-line notation as $[4, 1, 5, 2, 3]$, then $\ell_1(\sigma) = 3$, $\ell_2(\sigma) = 0$, $\ell_3(\sigma) = 2$, $\ell_4(\sigma) = 0$ and $\ell_5(\sigma) = 0$.

Definition 0.4. Let \(n \in \mathbb{N} \). Let \((a_1, a_2, \ldots, a_n)\) and \((b_1, b_2, \ldots, b_n)\) be two \(n \)-tuples of integers. We say that \((a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)\) if and only if there exists some \(k \in [n] \) such that \(a_k \neq b_k \), and the smallest such \(k \) satisfies \(a_k < b_k \).

For example, \((4, 1, 2, 5) <_{\text{lex}} (4, 1, 3, 0)\) and \((1, 1, 0, 1) <_{\text{lex}} (2, 0, 0, 0)\). The relation \(<_{\text{lex}}\) is usually pronounced “is lexicographically smaller than”; the word “lexigraphic” comes from the idea that if numbers were letters, then a “word” \(a_1 a_2 \cdots a_n \) would appear earlier in a dictionary than \(b_1 b_2 \cdots b_n \) if and only if \((a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)\).

Exercise 5. Let \(n \in \mathbb{N} \). Let \(\sigma \in S_n \) and \(\tau \in S_n \). Prove the following:

(a) If \((\sigma(1), \sigma(2), \ldots, \sigma(n)) <_{\text{lex}} (\tau(1), \tau(2), \ldots, \tau(n))\), then \((\ell_1(\sigma), \ell_2(\sigma), \ldots, \ell_n(\sigma)) <_{\text{lex}} (\ell_1(\tau), \ell_2(\tau), \ldots, \ell_n(\tau))\).

(b) If \((\ell_1(\sigma), \ell_2(\sigma), \ldots, \ell_n(\sigma)) = (\ell_1(\tau), \ell_2(\tau), \ldots, \ell_n(\tau))\), then \(\sigma = \tau\).

0.6. Comparing subsets of \([n]\)

If \(I \) and \(J \) are two finite sets of integers, then we write \(I \leq_{\#} J \) if and only if the following two properties hold:

- We have \(|I| \geq |J|\).
- For every \(r \in \{1, 2, \ldots, |J|\} \), the \(r \)-th smallest element of \(I \) is \(\leq \) to the \(r \)-th smallest element of \(J \).

For example, \(\{2, 4\} \leq_{\#} \{2, 5\} \) and \(\{1, 3\} \leq_{\#} \{2, 4\} \) and \(\{1, 3, 5\} \leq_{\#} \{2, 4\} \). (But not \(\{1, 3\} \leq_{\#} \{2, 4, 5\} \).)

Exercise 6. Let \(n \in \mathbb{N} \). Let \(I \) and \(J \) be two subsets of \([n]\).

(a) For every subset \(S \) of \([n]\) and every \(\ell \in [n] \), let \(a_S(\ell) \) denote the number of all elements of \(S \) that are \(\leq \ell \). Prove that \(I \leq_{\#} J \) holds if and only if every \(\ell \in [n] \) satisfies \(a_I(\ell) \geq a_J(\ell) \).

(b) Prove that \(I \leq_{\#} J \) if and only if \([n] \setminus J \leq_{\#} [n] \setminus I \).

Remark 0.5. Recall that we have defined a Dyck word as a list \(w \) of \(2n \) numbers, exactly \(n \) of which are 0’s while the other \(n \) are 1’s, and having the property that for each \(k \in [2n] \), the number of 0’s among the first \(k \) entries of \(w \) is \(\leq \) to the number of 1’s among the first \(k \) entries of \(w \).

It is not hard to see the connection between the relation \(\leq_{\#} \) and Dyck words: Let \(w = (w_1, w_2, \ldots, w_{2n}) \in \{0, 1\}^{2n} \) be a list of \(2n \) numbers, exactly \(n \) of which are 0’s while the other \(n \) are 1’s. Then, \(w \) is a Dyck word if and only if

\[
\{ i \in [2n] \mid w_i = 1 \} \leq_{\#} \{ i \in [2n] \mid w_i = 0 \}
\]
(in other words, for every \(r \in [n] \), the \(r \)-th appearance of 1 in \(w \) precedes the \(r \)-th appearance of 0 in \(w \)).

0.7. A rigorous approach to the existence of a cycle decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that any permutation can be decomposed into disjoint cycles.

Exercise 7. Let \(X \) be a finite set. Let \(\sigma \) be a permutation of \(X \).

Define a binary relation \(\sim \) on the set \(X \) as follows: For two elements \(x, y \in X \), we set \(x \sim y \) if and only if there exists some \(k \in \mathbb{N} \) such that \(y = \sigma^k(x) \).

(a) Prove that \(\sim \) is an equivalence relation.

For any \(x \in X \), we let \([x]_\sim\) denote the \(\sim \)-equivalence class of \(x \).

(b) For any \(x \in X \), prove that \([x]_\sim = \{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)\}\), where \(k = |[x]_\sim| \).

(c) For any \(\sim \)-equivalence class \(E \), let us define \(c_E \) to be the map

\[
X \to X, \quad x \mapsto \begin{cases}
\sigma(x), & \text{if } x \in E; \\
x, & \text{if } x \notin E.
\end{cases}
\]

Prove that \(c_E \) is a permutation of \(X \).

(d) Prove that if \(E = [x]_\sim \) for some \(x \in X \), then \(c_E \) can be written as \(\text{cyc}_{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)} \), where \(k = |[x]_\sim| \). (Don’t forget to show that \(\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x) \) are distinct, so that \(\text{cyc}_{\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)} \) is well-defined.)

(e) Let \(E_1, E_2, \ldots, E_m \) be all \(\sim \)-equivalence classes (listed without repetitions – that is, \(E_i \neq E_j \) whenever \(i \neq j \)). Prove that

\[
\sigma = c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m}.
\]

References

The numbering of theorems and formulas in this link might shift
when the project gets updated; for a “frozen” version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.