Ex. 2.7. Why are sums like \(\sum_{i=2}^{i=4} i^2 \) or \(\sum_{i \in \{2,4,6\}} i^2 \) well-defined?

Generally, why is \(\sum_{s \in S} a_s \), where \(S \) is a finite set and \((a_s)_{s \in S} \) is a family of numbers, well-defined?

Explanation: A number \(a \) is an element of \(A \), where \(A \) is either \(\mathbb{N} \) or \(\mathbb{Z} \) or \(\mathbb{Q} \) or \(\mathbb{R} \) or \(\mathbb{C} \).

- A family \((a_s)_{s \in S} \) of numbers (indexed by a set \(S \)) is a choice of a number \(a_s \) for each \(s \in S \).
- A family \((a_s)_{s \in S} \) of numbers (indexed by \(\{2,4,6\} \)) is a choice of a number \(a_2 \), a number \(a_4 \), & a number \(a_6 \).
For example,

\[
\sum_{s \in \{ -2, -1, 0, 1, 2 \}} s^3 \quad \text{equal to} \quad \left(\left((-2)^3 + (-1)^3 \right) + 0^3 \right) + 1^3 + 2^3
\]

or equal to \(\left((-2)^3 + 2^3 \right) + (-1)^3 \right) + 1^3 + 0^3 \quad ? \)

Why are these two sums equal?

Idea: To define \(\sum_{s \in S} q_s \) (for a finite set \(S \) & a family \((q_s)_{s \in S} \) of numbers), use recursion:

- if \(S = \emptyset \), set \(\sum_{s \in S} q_s = 0 \);
- if \(S \neq \emptyset \), then pick \(t \in S \), and set \(\sum_{s \in S} q_s = a_t + \sum_{s \in S \setminus t} q_s \).

But why is this well-defined, i.e. why doesn't choice of \(t \) matter?

Thm. 2.8 (General commutativity). The above definition is well-defined; i.e., all choices of \(t \) lead to the same result.
To make this more rigorous, define a set of numbers

\[\text{Sums}(a_s) \] for any finite set \(S \) and any family \((a_s)_{s \in S} \) of numbers

as follows:

1. If \(S = \emptyset \), set \(\text{Sums}(a_s) = \{0\} \).
2. If \(S \neq \emptyset \), then \(\text{Sums}(a_s) = \{ \sum_{t \in S} a_t + a_0 \} \).

Then, Thm. 2.8 becomes:

Thm. 2.8': For any set \(S \) and any family \((a_s)_{s \in S} \) of numbers,

\[\text{Sums}(a_s) \] is a 1-element set.

Proof of Thm. 2.8': "Induction on \(|S| \):"
For each $n \in \mathbb{N}$, we will let $\#(n)$ be the following statement:

$\left(\text{for any } n\text{-element set } S \text{ & any family } (a_s)_{s \in S} \right)$

$\text{Sums}(a_s) \text{ is a 1-element set } \text{ for } s \in S$.

Then, $\#(0)$ clearly holds (because if $n=0$, then $S=\emptyset$, so $\text{Sums}(a_\emptyset) = \{0\}$).

Now, we need to prove: if $\#(n)$, then $\#(n+1)$.

Now, let S be an $(n+1)$-element set. Let $(a_s)_{s \in S}$ be a family of numbers. We must prove that $\text{Sums}(a_s)$ is a 1-element set.

Clearly, $|S|=n+1>0$, so $S \neq \emptyset$, so $\exists p \in S$. Moreover, by $\#(n)$, the set $\text{Sums}(a_p)$ is a 1-element set. Let w_p be its one element.
Then, $a_p + w_p \in \text{Sums} \left(a_s \right), \quad s \in S$

So $\text{Sums} \left(a_s \right)$ has ≥ 1 element.

Now, let us prove that it has ≤ 1 element.

Let $a_q + w_q$ and $a_r + w_r$ be two of its elements.

Let $a_q + w_q$ and $a_r + w_r$ be two of its elements,

Let $a_q + w_q$ and $a_r + w_r$ be two of its elements,

(with $q \in S$, $w_q \in \text{Sums} \left(a_s \right)$, $r \in S$, $w_r \in \text{Sums} \left(a_s \right)$).

We want to prove: $a_q + w_q = a_r + w_r$.

If $q = r$, then $w_q = w_r$ because $\delta(n)$ shows that

If $q = r$, then $w_q = w_r$ because $\delta(n)$ shows that

$\text{Sums} \left(a_s \right)$ is a 1-element set. So $a_q + w_q = a_r + w_r$.

$\text{Sums} \left(a_s \right)$ is a 1-element set. So $a_q + w_q = a_r + w_r$.

In this case,

In this case,

If $q \neq r$, then pick any $w_q, w_r \in \text{Sums} \left(a_s \right)$.

If $q \neq r$, then pick any $w_q, w_r \in \text{Sums} \left(a_s \right)$.

Then, $a_q + w_q \in \text{Sums} \left(a_s \right)$, and thus

Then, $a_q + w_q \in \text{Sums} \left(a_s \right)$, and thus

$w_q + w_q = a_r + w_q$, since $\text{Sums} \left(a_s \right)$ is a 1-element set.
Similarly, \(\omega_r = \omega_q, \).

Thus, \(\omega_p = \omega_q + (\omega_q, \tau) \)

\[\text{associativity} \quad (\sigma_q + \sigma_r) + \omega_q, \tau \]

\[\text{commutativity} \quad (\sigma_q + \sigma_r) + \omega_q, \tau \]

\[\text{associativity} \quad \sigma_r + (\sigma_q + \omega_q, \tau) = \sigma_r + \omega_r. \]

In either case, we get \(\sigma_q + \omega_q = \sigma_r + \omega_r. \)

Thus, \(\sigma_{p(x)} \) has \(\leq 1 \) element.

\[\text{So, by ind. princ., 2.4, we conclude} \]

Thus, \(\sigma(n+1) \) holds. So, by ind. princ., 2.4, we conclude that \(\sigma(n) \) holds \(\forall n \). In other words, Thm. 2.8 is proven. \(\square \)
See, [notes, Ch. 1] for lots of formulas for summation signs. One example:

Thm. 2.9 (Splitting a sum). Let \(S \) be a finite set. Let assume that \((S_1, \ldots, S_k)\) be a decomposition of \(S \) (i.e., \(S_1, S_2, \ldots, S_k \) are subsets of \(S \) such that each element of \(S \) lies in exactly one of them).

Let \((a_s)_{s \in S}\) be a family of numbers.

Then,

\[
\sum_{s \in S} a_s = \sum_{s \in S_1} a_s + \sum_{s \in S_2} a_s + \cdots + \sum_{s \in S_k} a_s.
\]

Proof idea. Induction on \(| S | \).

In the induction step, pick any \(t \in S \), and pluck out \(a_t \) from both sides.

\(\square \)
2.2. Shifted Induction

Induction principle 2.10. Fix \(g \in \mathbb{Z} \). Set \(\mathbb{Z}_{\geq g} = \{g, g+1, g+2, \ldots \} \).

For each \(n \in \mathbb{Z}_{\geq g} \), let \(B(n) \) be a logical statement.

Assume: \(B(g) \) holds.

\[\forall n \in \mathbb{Z}_{\geq g}, \text{ if } B(n) \text{ holds, then } B(n+1) \text{ holds.} \]

Then, \(B(n) \) holds \(\forall n \in \mathbb{Z}_{\geq g} \).

Proof. Apply principle 2.1 to \(h(n) := B(n+g) \).

Example 2.11. Recall the ToHn.

Prop 2.12. \(\forall n \geq 1 \), \(\forall k \geq 2^n - 1 \), we can solve the \(n \)-disk ToHn in \(k \) steps.

Proof. Let \(B(n) = (\forall k \geq 2^n - 1, \text{ we can solve the } \ n \text{-disk ToHn in } k \text{ steps}). \)

We must prove this \(\forall n \geq 1 \).

\(B(1) \) is true (just move the disk around between pegs \(1,2 \), then send it to peg 3 at the last step).
Now, let $n \in \mathbb{Z}_{\geq 1}$ and assume $B(n)$ holds.

Why does $B(n+1)$ hold?

Let $k \geq 2^{n+1} - 1$. We must show how to solve the $(n+1)$-disk ToH in k steps.

Meanwhile, $B(n)$ holds, so that

$$(1) \quad \forall \ l \geq 2^n - 1, \text{ we can solve the } n\text{-disk ToH in } l \text{ steps.}$$

Now,

- first, move the disks $1, 2, \ldots, n$ to peg 2 in $2^{n+1} - 1$ steps.
 (This can be done by (1), applied to $l = 2^n - 1$.)

- then, move disk $n+1$ to peg 3 (in 1 step).

- then, move disks $1, 2, \ldots, n$ to peg 3 in $k - 2^n$ steps.
 (This can be done by (1), applied to $l = k - 2^n$, because $k - 2^n \geq 2^n - 1$ (since $k \geq 2^{n+1} - 1$).

So $(n+1)$-disk ToH is solved in k steps, thus, $B(n+1)$ holds. \square
2.3. Limited/bounded induction

Induction principle 2.13. Fix $p, q \in \mathbb{Z}$ with $p \leq q$.

For each $n \in \{p, p+1, \ldots, q\}$, let $C(n)$ be a logical statement.

Assume:

- $C(p)$ holds,
- $\forall n \in \{p, p+1, \ldots, q-1\}$, if $C(n)$ holds, then $C(n+1)$ holds.

Then $C(n)$ holds $\forall n \in \{p, p+1, \ldots, q\}$.

Proof. Apply principle 2.10 to $g = p$ and $B(n) = (\text{if } n \leq q, \text{then } C(n))$.

Example 2.13. 30 socks are hanging from a clothesline:

- 15 white socks (W) & 15 black socks (B),
- Show that you can find 10 consecutive socks, among which 5 are W and 5 are B.

(Ex: $\overbrace{W W B W W B B B B B}^{5 \text{ white}} \overbrace{B W W B W B W B B W W}^{5 \text{ black}}$)
Idea: Proof by contradiction. (So assume \(\forall \) such 10 socks.)

For each \(i \in [21] \), let

\[
b_i = (\# \text{ of black socks among the socks } i, i+1, \ldots, i+9) - 5.
\]

By assumption, \(b_i \neq 0 \ \forall i \).

However, \(b_1 + b_{12} + b_{21} = (\# \text{ of all black socks}) - 15 = 0 \).

Now, \text{WLOG} assume \(b_1 > 0 \) (otherwise, \& flip all colors).

Furthermore, for every \(i \in [20] \),

\[
b_{i+1} - b_i = \begin{cases}
1 & \text{if sock } i+10 \text{ is black but sock } i \text{ is white}, \\
-1 & \text{white} \\
0 & \text{black},
\end{cases}
\]

\(\implies \) \(|b_{i+1} - b_i| \leq 1 \).

So we have a sequence \((b_1, b_2, \ldots, b_{21}) \) of integers such that

\begin{itemize}
 \item \(b_i \neq 0 \ \forall i \),
 \item \(b_1 > 0 \),
 \item \(|b_{i+1} - b_i| \leq 1 \),
\end{itemize}

Claim: \(b_i > 0 \ \forall i \).
This follows from:

Lem 2.14 (Discrete IVT / "Discrete continuity").

Let \((b_1, b_2, \ldots, b_n)\) be a sequence of integers such that

- \(b_i \neq 0 \quad \forall i,\)
- \(b_i > 0,\)
- \(|b_{i+1} - b_i| \leq 1 \quad \forall i \in \mathbb{Z} - 1.\)

Then \(b_i > 0 \quad \forall i.\)

Proof. For each \(n \in \mathbb{Z} - 1\), let \(C(n)\) be the statement \((b_n > 0).\)

Use Induction Principle 2.13 to prove \(C(n)\) holds \(\forall n.\)

\(C(1)\) holds (since \(b_1 > 0),\)

Now let \(n \in \mathbb{Z} - 1\). Assume \(C(n)\) holds.

We must prove \(C(n+1)\) holds.

We have \(b_n > 0\) (since \(C(n)\) holds) \(\Rightarrow b_{n+1} \geq 1\) (since \(b_n \in \mathbb{Z}\)).

Now assumption yields \(|b_{n+1} - b_n| \leq 1\), so \(b_{n+1} \geq b_n - 1 \geq 1 - 1 = 0.\)

But assumption yields \(b_{n+1} \neq 0\). Hence \(b_{n+1} > 0.\) Thus, \(C(n+1)\) holds.

So Principle 2.13 yields \(C(n) \forall n.\) Hence Lem. 2.14 is proven. \(\square\)
Back to our example, $b_i > 0 \ \forall i$.

So $b_1 + b_{11} + b_{21} > 0 + 0 + 0 = 0$, contradicting $b_1 + b_{11} + b_{21} = 0$.

So we have proven 10 consecutive socks with 5 W & 5 B.

Variants: What if 40 socks (20 W & 20 B), and we want 10 consec. (5 W & 5 B)? Yes.

38 socks (15 W & 19 B), \quad 10 \quad ? Yes.

[Proof: $b_1 + b_{11} + b_{21} + b_{29} \in \{ -1, 0, 1 \}$.

But $b_i > 0$ so $b_i > 1$ so $b_1 + b_{11} + b_{21} + b_{29}$

$\quad \quad > 1 + 1 + 1 + 1 = 4$. \(\neq \)

8 socks (4W & 4B), \quad 6 consec. (3 W & 3 B)? No.

2.4. Strong induction

Induction principle 2.16. Let \(g \in \mathbb{Z} \).

Let \(\mathcal{A}(n) \) be a statement for all \(n \in \mathbb{Z} \geq g \).

Assume that:

- \(\forall n \in \mathbb{Z} \geq g \), if \((\mathcal{A}(m) \text{ holds } \forall m < n)\),

then \(\mathcal{A}(n) \) holds.

Then, \(\mathcal{A}(n) \) holds \(\forall n \in \mathbb{Z} \geq g \).

Remark: There is no "explicit" induction base.

In other words, we don't need to assume \(\mathcal{A}(g) \).

Instead, \(\mathcal{A}(g) \) follows from our assumption
"if \((\mathcal{A}(m) \text{ holds } \forall m < n)\), then \(\mathcal{A}(n) \) holds",
because this assumption, applied to \(n = g \), says
"if \((\mathcal{A}(m) \text{ holds } \forall m < g)\), then \(\mathcal{A}(g) \) holds",

This assumes nothing

which is the same as saying "\(\mathcal{A}(g) \) holds".
Thus, a strong induction needs no induction base. Often, however, the proof of the induction step has to distinguish between cases $n=g$ & $n>g$, and then the first case is called an induction base.

For example, see [LeLeMe, 85.2].