4. THE TWELVEFOLD WAY

4.4. WHAT IS IT?

The twelvefold way is a table of $4 \times 3 = 12$ standard counting problems that frequently appear.

Informal description: Given a set A of balls, and a set X of boxes.
A placement means a way to distribute the balls into the boxes.

Rigorously: a placement is a map from A to X.
At least, this is what will be called the "$L \rightarrow L$ placements."

How many placements are there? $|X|^{|A|}$.

Example: $|X| = 2, |A| = 3$.
For example, take $X = \{1, 2\}$ and $A = \{1, 2, 3\}.$
Always draw boxes in increasing order: \[
\begin{array}{llll}
1 & 2 & 3
\end{array}
\]
Here are the 8 $L \rightarrow L$ placements:
The order of the balls in a single box doesn't matter:

\[
\begin{array}{c}
\boxed{\boxed{1 2 3}} \\
\boxed{1 3} \\
\boxed{2 3} \\
\boxed{1 2 3}
\end{array}
\quad =
\begin{array}{c}
\boxed{\boxed{1 3 2}} \\
\boxed{3} \\
\boxed{2 3} \\
\boxed{1 2 3}
\end{array}
\]

This suggests the following variations:
- What if we require \(f : A \rightarrow X \) to be injective (i.e., each box contains \(\leq 1 \) ball), or surjective (i.e., each box contains \(\geq 1 \) ball)?
What if the balls are unlabelled (i.e., indistinguishable)?

Note that we have not made this rigorous, but the gist is that we treat
\[
\begin{array}{c}
1 \\
2 \ 3
\end{array}
\quad \text{and} \quad
\begin{array}{c}
2 \\
1 \ 3
\end{array}
\]
as the same placement.
We will see how to make this rigorous.

What if the boxes are unlabelled? i.e., what if we treat
\[
\begin{array}{c}
1 \\
2 \ 3
\end{array}
\quad \text{and} \quad
\begin{array}{c}
2 \ 3 \\
1
\end{array}
\]
as the same placement?

What if both balls and boxes are unlabelled?

So we get \(3 \cdot 4 = 12 \) different counting problems.

List them as a table:
<table>
<thead>
<tr>
<th>$A \rightarrow X$</th>
<th>arbitrary</th>
<th>injective</th>
<th>surjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L \rightarrow L$</td>
<td>$</td>
<td>X</td>
<td>^{</td>
</tr>
<tr>
<td>$U \rightarrow L$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow U$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U \rightarrow U$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, $L \rightarrow U$ means "balls are labelled, boxes are unlabelled".

The goals of this chapter are:
- Formulate $U \rightarrow L$, $L \rightarrow U$, and $U \rightarrow U$.
- Fill in the remaining 11 cells.
- See some examples.
Example: \(|X| = 2, \quad |A| = 3\).

| | arbitrary | injective \((\text{since} \, |x| < |A|)\) | surjective |
|--------|-----------|--------------------------------|------------|
| \(L \rightarrow L\) | 8 | 0 | 6 |
| \(u \rightarrow L\) | 4 | 0 | 2 |
| \(L \rightarrow u\) | 4 | 0 | 3 |
| \(u \rightarrow u\) | 2 | 0 | 1 |

(e.g.) arbitrary \(L \rightarrow u\) placements:

\[
\begin{array}{c}
\text{①, ②, ③, ④, ⑤} \\
\text{①, ②, ③}
\end{array}
\]

In general: Not each of the 12 questions has a closed-form solution. But there are good recursive answers.
L→L placements are just maps A→X.

Prop. 4.1. \((# \text{ of } L\rightarrow L \text{ placements } A \rightarrow X) = |X|^{|A|} \).

Proof. This is Theorem 3.4. \(\square \)

Prop. 4.2. \((# \text{ of injective } L\rightarrow L \text{ placements } A \rightarrow X) = (# \text{ of injective maps } A \rightarrow X) \)

\[= |X| (|X|-1) (|X|-2) \cdots (|X|-|A|+1), \]

Proof. This is Theorem 3.5. \(\square \)

Prop. 4.3. \((# \text{ of surjective } L\rightarrow L \text{ placements } A \rightarrow X) = (# \text{ of surjective maps } A \rightarrow X) \)

\[= \text{sur}(|A|, |X|), \]

Proof. This is Proposition 3.9. \(\square \)

(See HW3 exercise 2 for a formula for \(\text{sur}(n,k) \).)
Typical applications of $L \to L$ placements:
- assigning grades (from a finite set X) to students (from a finite set A);
- $L \to L$ placements (arbitrary);
- assigning IP addresses to a bunch of computers;
- injective $L \to L$ placements.

- How many 8-digit telephone numbers are there with no 2 equal digits?

Injective $L \to L$ placements (with $A = \{8\}$ and $X = \{0, 1, \ldots, 9\}$)

$\begin{array}{cccccc}
\underline{2} & \underline{4} & \underline{3} & \underline{5} & \underline{2} & \underline{6} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}$

\Rightarrow telephone number 203549686

\Rightarrow the number of such numbers is $10 \cdot 9 \cdots 3 = \frac{10!}{2!}$.
Remark: Here's a quick problem NOT from the twelfold way:

How many 8-digit telephone numbers contain no 2 adjacent equal digits?

(e.g. 31315315 is okay, but 12334567 isn't.)

Answer:

\[
\begin{align*}
10 & \quad \uparrow \\
\text{options for 1st digit} & \quad \uparrow \\
9 & \quad \uparrow \\
\text{options for 2nd digit} & \quad \uparrow \\
9 & \quad \uparrow \\
\text{options for 3rd digit} & \quad \ldots \\
9 & \\
\end{align*}
\]

\[= 10 \cdot 9^7.\]

4.3. UNLABELLED OBJECTS

What does it mean for balls, or boxes, to be unlabelled?

The idea is that (with unlabelled boxes) we want to treat \[\begin{array}{c}
\{1, 2, 3\}
\end{array}\] and \[\begin{array}{c}
\{2, 3, 4\}
\end{array}\] as the
The rigorous way to do this is by introducing an equivalence relation & passing to equivalence classes.

(References for equivalence classes: notes/handouts by Melissa Lynn, as linked from the class website.)

Def. A (binary) relation on a set S is a subset of $S \times S$.

Idea: something like $=$ or \leq or \leq or $|$ (divides), or $|$ (divisible by), or \equiv, or \neq, or \sim (many more).

"$\equiv \text{mod } k$" for a given $k \in \mathbb{Z}$, or \sim for geometric shapes, (many more).

If R is a relation on S, then we write $a R b$ if and only if $(a, b) \in R$.

For example, the relation \leq on \mathbb{N} is really the set of all $(a, b) \in \mathbb{N} \times \mathbb{N}$ with $a \leq b$.

Def. An equivalence relation on a set S is a relation \sim which is:

- reflexive. (i.e., it satisfies $a \sim a \ \forall a \in S$);
- symmetric (i.e., if $a \sim b$, then $b \sim a$);
- transitive (i.e., if $a \sim b$ and $b \sim c$, then $a \sim c$).

Idea: An equivalence relation relates objects that we want to treat as equal.

Examples: $=$ is an equivalence relation (on any set).

"$\equiv \mod k$" is an equivalence relation $\forall k \in \mathbb{Z}$,

\leq is not an equiv. rel. (it is reflexive & transitive, but not symmetric).

\neq is not (it is symmetric but neither reflexive nor transitive).

\sim for geometric shapes is an equiv. rel.,

\parallel for lines in the plane.
Now, go back to balls & boxes:

Def. Let $f, g : A \to X$. Then we say that

- f is box-equivalent to g (written $f \boxsim g$) if & only if \exists permutation σ of X such that $f = \sigma \circ g$ (in other words, f can be obtained from g by permuting boxes).

- f is ball-equivalent to g (written $f \ballsim g$) if & only if \exists permutation τ of $\pi(A)$ such that $f = g \circ \tau$ (in other words, f can be obtained from g by permuting balls).

- f is box-ball-equivalent to g (written $f \boxballsim g$) if & only if \exists permutation σ of X & τ a permutation τ of A such that $f = \sigma \circ g \circ \tau$.

Examples:

\[
\begin{array}{c}
\text{box} \quad \sim \\
\text{box} \\
\text{ball}
\end{array}
\quad \begin{array}{c}
\text{box} \\
\text{ball}
\end{array}
\]

All of \(\sim \), \(\sim \), and \(\sim \) are equivalence relations. So counting \(U \rightarrow L \) placements should mean treating ball-equivalent labelings as identical. How to do that?

- Count equivalence classes.

Def. Let \(\sim \) be an equivalence relation on a set \(S \).

- Let \(x \in S \). Then, the \(\sim \)-equivalence class of \(x \), denoted by \([x]_\sim\), is defined by

\[
[x]_\sim = \{ y \in S \mid y \sim x \}.
\]
Examples: in \(\mathbb{N} \), we have

\[
[5] = \{ y \in \mathbb{N} \mid y \equiv 5 \pmod{5} \} = \{5, 10, 15, \ldots \}.
\]

\[
[5] \equiv_{\pmod{3}} = \{ y \in \mathbb{N} \mid y \equiv 5 \pmod{3} \} = \{2, 5, 8, 11, 14, \ldots \}.
\]

\[
[5] \equiv_{\pmod{2}} = \{1, 3, 5, 7, \ldots \}.
\]

In our running example with \(|X| = 2\) and \(|A| = 3\), we have

\[
\begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}.
\]
Crucial fact about equivalence classes:

Let \sim be an equivalence relation on a set S.

Let $x \in S$ and $y \in S$.

Then $x \sim y \iff [x]_{\sim} = [y]_{\sim}$.

Thus, "counting elements of S up to \sim-equivalence"

$=$ counting distinct \sim-equivalence classes.
Def. A \(U \rightarrow L \) placement (i.e., placement of Unlabelled balls into Labelled boxes) is a \(\sigma \)-equivalence equivalence class of maps \(f: A \rightarrow X \).

Example. For \(|X| = 2 \) and \(|A| = 3 \), here are the \(U \rightarrow L \) placements (drawn as circles):
Notation: When visualizing a $U \rightarrow L$ placements, we just draw the balls as circles, with no numbers in them. So the 4 $U \rightarrow L$ placements for $|X| = 2$ and $|A| = 3$ are

\[
\begin{array}{c}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
1 \\
1 \\
1 \\
1 \\
\end{array}
\end{array}
\]

Prop. 4.5, \(\# \text{ of } U \rightarrow L \text{ placements } A \rightarrow X \) \(= (\# \text{ of } (x_1, \ldots, x_{|X|}) \in \mathbb{N}^{\times|X|} \text{ satisfying } x_1 + \ldots + x_{|X|} = |A|) \)

\[
= \binom{|A| + |X| - 1}{|A|}.
\]

Proof. 1st equality: Consider the bijection \(\{ U \rightarrow L \text{ placements} \} \rightarrow \{ \text{weak compositions of } |A| \text{ into } |X| \text{ parts} \} \),

\[
\begin{array}{c}
\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\end{array}
\end{array}
\]

(Fine print: We need to assume that $X = [1, \ldots, |X|]$.)
(We are not doing the rigorous argument.)

Thus,

\(\text{(\# of } u \rightarrow l \text{ placements)} \)

\(= (\# \text{ of weak compositions of } |A| \text{ into } |x| \text{ parts}) \)

\(= (\# \text{ of } (x_1, \ldots, x_{|x|}) \in \mathbb{N}^{|x|} \text{ satisfying } x_1 + \cdots + x_{|x|} = |A|) \). \quad \Box

2nd equality: Theorem 3.25.

Prop. 4.6. \((\# \text{ of surjective } u \rightarrow l \text{ placements}) \)

\(= (\# \text{ of } (x_1, \ldots, x_{|x|}) \in \{1, 2, 3, \ldots\}^{|x|} \text{ satisfying } x_1 + \cdots + x_{|x|} = |A|) \)

\[= \begin{cases} \binom{|A| - 1}{|x| - 1} & \text{if } |A| \geq |x|; \\ \lfloor |x| = 0 \rfloor & \text{if } |A| = 0 \end{cases} \]

\[= \binom{|A| - 1}{|A| - |x|}. \]
Proof. 1st equality: same argument as in Prop. 4.5.

2nd equality: Theorem 3.23.

3rd equality: symmetry of Pascal's triangle.

\[\text{Prop. 4.7, (} \# \text{ of injective } U \to L \text{ placements)} \]

\[= (\# \text{ of } (x_1, \ldots, x_{|x|}) \in \{0,1\}^{|x|} \text{ satisfying } x_1 + \ldots + x_{|x|} = |A|) \]

\[= \binom{|x|}{|A|}. \]

\[\text{Proof. 1st equality: same argument as in Prop. 4.5.} \]

\[\text{2nd equality: Theorem 3.24.} \]

4.5. L \to U

Def. An \(L \to U \) placement is a box-equivalence class of maps \(f: A \to X \).
Example: \(|X| = 2, \ |A| = 3 \).
21 boxes equivalent identically:

E.g.

\[
\begin{array}{cccc}
1 & 2 & 1 & 4 \\
& & 3 &
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& & &
\end{array}
\]

(since they each consist of 1 box with "ball 1", 1 box with "ball 2", ..., 1 box with "ball |A|", and |X| - |A| empty boxes),

so the # of equivalence classes is 1.

Prop. 4.9.

\[
\# \text{ of surjective } L \to U \text{ placements}
\]

\[
= \left\{ \begin{array}{l}
|A| \\
|X| \end{array} \right\}
\]

(2 Stirling number of the 2nd kind, as defined on HW3 by \(\frac{s_{n}}{k!} = \frac{\text{sur}(n,k)}{k!} \))

\[
= \frac{\text{sur}(|A|,|X|)}{|X|!}
\]
Proof. With $X = \{1, 2\}$,

Then, the surjective $L \to U$ placements are in bijection with the set partitions of A into 1×1 parts.

\[
\begin{bmatrix}
1 & 3 & 5 \\
35 & 2 & 4
\end{bmatrix}
\]

\[
\text{Box}
\]

\[
= \{ \{1\}, \{3, 5\} \}
\]

So
\[
\text{(\# of surjective $L \to U$ placements)}
\]

\[
= (\text{\# of set partitions of } A \text{ into } 1 \times 1 \text{ parts})
\]

\[
= \sum_{A \subseteq \{1, 2\}} \binom{|A|}{1 \times 1}
\]

(by some remark in HW3)

\[
= \frac{\text{sur } (1|A|, 1|X|)}{|X|!}
\]

\[
\square
\]
Prop. 4.10, \((\#\) of \(L \to U\) placements) \(-22-\)

\[= \sum 1^1_j + \sum 1^2_j + \sum 1^3_j + \ldots + \sum 1^n_j.\]

Proof. Exercise. \(\Box\)