Exercise 1

Exercise 0.1. Let $D = (V, A, \psi)$ be an acyclic digraph. Then there is a list of elements (v_1, v_2, \ldots, v_n) of V such that each element of V appears exactly once in the list (v_1, v_2, \ldots, v_n), and whenever i and j are two elements of $[n]$, and D features an arc which starts in v_i and ends in v_j, then this implies that $i < j$.

Proof. Let $\text{Anc} : V \to \{	ext{subsets of } V\}$ be the function that maps each $v \in V$ to the set

$$\{w \in V \mid \text{ and there exists a walk from } w \text{ to } v\}.$$

(As we know, the existence of a walk from w to v is equivalent to the existence of a path from w to v; but we won’t actually need this.)

Since V is a finite set, there exists some $n \in \mathbb{N}$ such that $|V| = n$. Consider this n. Since $|V| = n = |[n]|$, there exists a bijection $\phi : [n] \to V$. Fix this bijection ϕ.

We now define the list (v_1, v_2, \ldots, v_n) to be the list of all the n elements $v \in V$ in increasing order of $|\text{Anc}(v)|$, where ties are broken as follows: If $v, w \in V$ satisfy $|\text{Anc}(v)| = |\text{Anc}(w)|$, then v should be placed after w if $\phi(v) > \phi(w)$ (and conversely, w should be placed after v if $\phi(w) > \phi(v)$).

We will now show that this list satisfies the two requirements in the claim. First of all, it is clear that each element of V appears exactly once in this list, since this list has been constructed as a list of all elements of V in some order.

It remains to check the second requirement. In other words, it remains to show that, if i and j are two elements of $[n]$, and if D has an arc which starts at v_i and ends at v_j, then $i < j$.

Indeed, let i and j be two elements of $[n]$, and assume that D has an arc which starts at v_i and ends at v_j. We must prove $i < j$.

We will first show that $\text{Anc}(v_i) \subseteq \text{Anc}(v_j)$. Indeed, suppose that $w \in \text{Anc}(v_i)$. Thus, there exists a walk \mathbf{a} from w to v_i (by the definition of $\text{Anc}(v_i)$). And because there is an arc which begins at v_i and ends at v_j, then one can add that arc to the end of the walk \mathbf{a} to construct a walk from w to v_j. Hence, there exists a walk from w to v_j, so $w \in \text{Anc}(v_j)$. So we have shown that $w \in \text{Anc}(v_i)$ implies that $w \in \text{Anc}(v_j)$. In other words, $\text{Anc}(v_i) \subseteq \text{Anc}(v_j)$.

We will next show that $v_j \not\in \text{Anc}(v_i)$. Suppose to the contrary that $v_j \in \text{Anc}(v_i)$. Then there exists some walk \mathbf{b} from v_j to v_i (by the definition of $\text{Anc}(v_i)$). Because D is acyclic, \mathbf{b} must not contain any cycles, which means that v_j does not appear in \mathbf{b} except for at the very start. This means that the arc from v_i to v_j is not used in \mathbf{b}, as otherwise, v_j would appear in the walk after that arc was used, which would by definition not be at the very start. Therefore, the walk constructed by adding that arc from v_i to v_j on to the end of \mathbf{b} is a cycle in D (going from v_i to v_j). Thus, D has a cycle. This contradicts the assumption that D is acyclic. This contradiction reveals that $v_j \not\in \text{Anc}(v_i)$.

But there exists a walk from v_j to v_j (namely, the trivial walk (v_j)). Thus, $v_j \in \text{Anc}(v_j)$ (by the definition of $\text{Anc}(v_j)$). Contrasting this to $v_j \not\in \text{Anc}(v_i)$, we obtain $\text{Anc}(v_i) \neq \text{Anc}(v_j)$. Thus, $\text{Anc}(v_i)$ is a proper subset of $\text{Anc}(v_j)$. Hence, $|\text{Anc}(v_i)| < |\text{Anc}(v_j)|$.

Therefore, the vertex v_i appears earlier than v_j in the list (v_1, v_2, \ldots, v_n) (due to how the list was constructed). In other words, $i < j$. This concludes our proof that the second requirement holds.

Hence, the constructed list satisfies the requirements of the claim. \hfill \Box

Exercise 0.2. Let D be an acyclic multidigraph. A vertex v of D is said to be a sink if there is no arc of D with source v.

If u and v are any two vertices of D, then:

- we write $u \rightarrow v$ if and only if D has an arc with source u and target v;

- we write $u \xrightarrow{*} v$ if and only if D has a path from u to v.

The so-called no-watershed condition says that for any three vertices u, v, and w of D satisfying $u \rightarrow v$ and $u \rightarrow w$, there exists a vertex t of D such that $v \xrightarrow{*} t$ and $w \xrightarrow{*} t$.

If the no-watershed condition holds, then for each vertex p of D, there exists exactly one sink q of D such that $p \xrightarrow{*} q$.

Proof. Let D be an acyclic multidigraph for which the no-watershed condition holds. Let V be the vertex set of D, and let $h : V \rightarrow \mathbb{N}$ be the function that maps each $v \in V$ to the maximum length of a path in D which begins at v.

We will first show that h is well defined. Observe that D has finitely many vertices. Also, each path in D goes through each vertex of D at most one time. Since the length of a path is equal to the number of edges taken in that path, which is equal to the number of vertices taken in that path minus one, the length of a path in D must be an integer $\leq |V| - 1$. So the set of lengths of paths which begin at a vertex $v \in V$ is some subset of $\{0, 1, \ldots, |V| - 1\}$. And since this subset is a finite nonempty set of integers (nonempty because the trivial path (v) always exists), it must have a maximum value. Hence, for all vertices $v \in V$, the number $h(v)$ is defined.
We will next show that if \(u, v \in V \), and if there exists a path of nonzero length from \(u \) to \(v \), then
\[
h(v) < h(u).
\] (1)

[Proof of (1). Let \(u, v \in V \), and suppose that there exists a path of nonzero length from \(u \) to \(v \). Consider such a path \(a \); thus, its length is positive. By the definition of \(h(v) \), we know that there is a path \(b \) of length \(h(v) \) which begins at \(v \). Now consider the walk \(c \) formed by adding the path \(b \) onto the end of the path \(a \). This new walk \(c \) is still a path (since otherwise, it would contain a cycle, but this would contradict the acyclicity of \(D \)), and has length \(> h(v) \) (indeed, its length equals the sum of the lengths of \(a \) and \(b \), but the former length is positive and the latter is \(h(v) \)). Thus, \(c \) is a path in \(D \) which begins at \(u \) and has length \(> h(v) \). Since \(h(u) \) is the maximum length of a path in \(D \) which starts at \(u \), we thus conclude that \(h(u) \) is at least as large as the length of \(c \), which is \(> h(v) \). Hence, \(h(u) > h(v) \). This proves (1).]

From (1), we immediately obtain the following: If \(u, v \in V \), and if there exists a path from \(u \) to \(v \), then
\[
h(v) \leq h(u).
\] (2)

(Indeed, if this path has nonzero length, then this inequality follows from (1), whereas otherwise it follows from \(v = u \).)

The exercise claims that for each vertex \(v \) of \(D \), there exists exactly one sink \(q \) of \(D \) such that there is a path from \(v \) to \(q \). We will now prove this claim by strong induction on \(h(v) \).

For the base case, suppose that \(v \in V \) and \(h(v) = 0 \). Since \(h(v) = 0 \), there are no paths in \(D \) of nonzero length which start at \(v \). This is possible only if there are no arcs in \(D \) which begin at \(v \), which implies that \(v \) is a sink. Thus, \(v \) is a sink; hence, there exists only one vertex \(q \in V \) for which there exists a path from \(v \) to \(q \) (namely, \(v \) itself). And since \(v \) is a sink, this means that there exists a path from \(v \) to exactly one sink (itself), and no other sinks (or even vertices for that matter). This completes the induction base.

Now, to the induction step. Let \(n \in \mathbb{N} \). Assume that the claim holds for all vertices \(u \in V \) such that \(h(u) < n \). Consider a vertex \(v \in V \) such that \(h(v) = n \). We need to prove the claim for this vertex \(v \). If \(h(v) = 0 \), then this has already been proven in the above induction base; thus, we assume that \(h(v) > 0 \). Hence, there exists a path of nonzero length which originates at \(v \). Thus, there exists an arc with source \(v \).

Let \(B \) be the set of the targets of all arcs with source \(v \). Since such arcs do exist (as we have just seen), we have \(B \neq \emptyset \). And also, each path which begins at \(v \) must have its second vertex be a vertex in \(B \). And further, if \(w \in B \), then there exists a path from \(v \) to \(w \), so that \(h(w) < h(v) \) (by (1)).

Now let \(w_1 \in B \). Since \(B \neq \emptyset \), such a \(w_1 \) must exist. And since \(h(w_1) < h(v) = n \), we can apply the induction hypothesis to \(w_1 \) instead of \(v \). We conclude that there exists exactly one sink \(x \in V \) such that there is a path from \(w_1 \) to \(x \). Consider this \(x \). Since \(w_1 \in B \), there exists a path from \(v \) to \(w_1 \), so there exists a path from \(v \) to \(x \) (via \(w_1 \)).

Now let \(w_2 \in B \) be arbitrary (in particular, \(w_2 \) may be equal to \(w_1 \)). Since \(w_1, w_2 \in B \), we have \(v \rightarrow w_1 \) and \(v \rightarrow w_2 \). Since the no-watershed condition holds, we conclude that there exists a vertex \(t \in V \) such that there is a path from \(w_1 \) to \(t \) and there is a path from \(w_2 \) to \(t \). Therefore, using (2), we obtain \(h(t) \leq h(w_1) < h(v) = n \). So by the induction hypothesis (applied to \(t \) instead of \(v \)), there exists exactly one sink \(y \in V \) such that there is a path from \(t \) to \(y \). Consider this \(t \). Concatenating a path from \(w_2 \) to \(t \) with a path from \(t \) to \(y \), we obtain a walk from \(w_2 \) to \(y \), thus a path from \(w_2 \) to \(y \). Similarly, we find that there is a path from \(w_1 \) to \(y \).

So \(y \) is a sink for which there exists a path from \(w_1 \) to \(y \). But we have previously defined \(x \) to be the only such sink. Therefore, \(y = x \). But recall that there is a path from \(w_2 \) to \(y \).
In other words, there is a path from \(w_2 \) to \(x \) (since \(y = x \)).

We thus have shown that for each \(w_2 \in B \), there is a path from \(w_2 \) to \(x \).

Now, consider any sink \(z \) for which there is a path from \(v \) to \(z \). This path has nonzero length (since \(h(v) > 0 \), so that \(v \) itself is not a sink), and thus has a second vertex. Denote this second vertex by \(w_2 \); thus, \(w_2 \in B \), so that (as we have just seen) there is a path from \(w_2 \) to \(x \). Also, from \(w_2 \in B \), we obtain \(h(w_2) < h(v) = n \), so that we can apply the induction hypothesis to \(w_2 \) instead of \(v \). We thus conclude that there is exactly one sink \(q \) such that there is a path from \(w_2 \) to \(q \). This proves the claim for our vertex \(v \). So the induction step is complete, and the claim of the exercise follows.

EXERCISE 4

PART A

Definition 0.3. Let \(n \in \mathbb{N} \) and \(m \in \mathbb{N} \). The graph \(K_{n,m} \) is defined to be the simple graph with \(n+m \) vertices

\[1, 2, \ldots, n, -1, -2, \ldots, -m \]

and \(nm \) edges

\[\{i, -j\} \quad \text{for all} \ i \in [n] \ \text{and} \ j \in [m]. \]

(Note that \((K_{n,m}; \{1, 2, \ldots, n\}; \{-1, -2, \ldots, -m\}) \) is a bipartite graph, called the complete bipartite graph.)

Exercise 0.4. Let \(m, n \in \mathbb{N} \). Then the chromatic polynomial of \(K_{n,m} \) is given by

\[\chi_{K_{n,m}} = \sum_{i=0}^{n} \text{sur}(n,i) \binom{x}{i} (x-i)^m \]

Proof. Refer to the vertices \(1, 2, \ldots, n \) of \(K_{n,m} \) as the *positive vertices* of \(K_{n,m} \), and to the vertices \(-1, -2, \ldots, -m \) as the *negative vertices* of \(K_{n,m} \).

Observe that for any color used in a proper coloring of \(K_{n,m} \), that color can not appear on both a positive vertex and a negative vertex, since there is an edge connecting each positive vertex to each negative vertex. Hence, in a proper coloring of \(K_{n,m} \), the set of colors used to color the positive vertices, and the set of colors used to color the negative vertices are disjoint.

Now, let \(k \in \mathbb{N} \). Recall that the value \(\chi_{K_{n,m}}(k) \) of the chromatic polynomial is equal to the number of proper \(k \)-colorings of \(K_{n,m} \). We will count these \(k \)-colorings now. Let \(C = [k] \); thus, a \(k \)-coloring of \(K_{n,m} \) is a map from the set of vertices of \(K_{n,m} \) to \(C \). We can construct such a coloring \(f \) in the following four steps:

- Choose the number \(i \) of colors that will be used to color the positive vertices (so \(i \) will be \(|f([n])| \)). This is a number between 0 and \(n \).
- Choose the set \(C_p \) of colors that will be used to color the positive vertices. This must be an \(i \)-element subset of the \(k \)-element set \(C \). Thus, there are \(\binom{k}{i} \) options here.
• Color the positive vertices with the colors from C_p, using each color at least once. This is tantamount to choosing a surjective map from the n-element set $[n]$ to the i-element set C_p (sending each positive vertex to its color); thus, there are $\operatorname{sur}(n,i)$ options for it.

• Finally, color the negative vertices. Their colors need to be chosen from the $k-i$ colors that don’t belong to C_p (since the set of colors used to color the positive vertices, and the set of colors used to color the negative vertices must be disjoint in a proper k-coloring), but we don’t have to use each color. Hence, this is tantamount to choosing a map from the m-element set $\{-1,-2,\ldots,-m\}$ to the $k-i$-element set $C\setminus C_p$. Thus, there are $(k-i)^m$ options at this step.

At the end of this algorithm, all vertices of $K_{n,m}$ are colored, and the resulting k-coloring is proper (because each edge connects a positive vertex with a negative vertex, and we’ve ensured that the latter vertex has a different color than the former). Hence, the number of all proper k-colorings of $K_{n,m}$ is $\sum_{i=0}^{n} \binom{k}{i} \operatorname{sur}(n,i) (k-i)^m$ (which we get by multiplying the numbers of options in the above algorithm). On the other hand, this is $\chi_{K_{n,m}}(k)$ (as we already showed). Comparing the two results, we find

$$\chi_{K_{n,m}}(k) = \sum_{i=0}^{n} \binom{k}{i} \operatorname{sur}(n,i) (k-i)^m.$$

Now we have proven this for each $k \in \mathbb{N}$. Thus, the two polynomials

$$\chi_{K_{n,m}}(x) \quad \text{and} \quad \sum_{i=0}^{n} \binom{x}{i} \operatorname{sur}(n,i) (x-i)^m$$

are equal to each other on each point $k \in \mathbb{N}$. This means that they are equal to each other on infinitely many points. Hence, they must be identical as polynomials (by the “polynomial identity trick”). In other words,

$$\chi_{K_{n,m}}(x) = \sum_{i=0}^{n} \binom{x}{i} \operatorname{sur}(n,i) (x-i)^m = \sum_{i=0}^{n} \operatorname{sur}(n,i) \binom{x}{i} (x-i)^m.$$

\[\square\]

Part B

Exercise 0.5. For all $m, n \in \mathbb{N}$, it holds that

$$\sum_{i=0}^{n} \operatorname{sur}(n,i) \binom{x}{i} (x-i)^m = \sum_{i=0}^{m} \operatorname{sur}(m,i) \binom{x}{i} (x-i)^n.$$

Proof. Let $m, n \in \mathbb{N}$. We claim that the graphs $K_{n,m}$ and $K_{m,n}$ are identical up to the names of their vertices.\(^1\)

Indeed, the graph $K_{n,m}$ has vertices $1, 2, \ldots, n$ and $-1, -2, \ldots, -m$, with edges $\{i, -j\}$ for $i \in [n]$ and $j \in [m]$. If one renames each vertex k as $-k$, and updates the formula for edges such that it is consistent with the new names, then the resulting graph has the

\(^1\)That is, we can rename the vertices of $K_{n,m}$ in such a way that the resulting graph is $K_{m,n}$. In more rigorous language, we are saying that the graphs $K_{n,m}$ and $K_{m,n}$ are isomorphic.

Nathaniel Gorski (edited by Darij Grinberg)
vertices $-1, -2, \ldots, -n$ and $1, 2, \ldots, m$, with edges $\{-i, j\}$ for $i \in [n]$ and $j \in [m]$. But this is precisely the graph $K_{m,n}$. Hence, $K_{n,m}$ is equal to the graph $K_{m,n}$, except for the fact that the vertices are named differently.

And since the way the vertices of a graph are named does not in any way affect the number of proper colorings of a graph, it follows that $\chi_{K_{n,m}}(k) = \chi_{K_{m,n}}(k)$ for each $k \in \mathbb{N}$. In other words, the polynomials $\chi_{K_{n,m}}$ and $\chi_{K_{m,n}}$ are equal to each other on each point $k \in \mathbb{N}$. Hence, $\chi_{K_{n,m}} = \chi_{K_{m,n}}$.

In part (a), it was shown that $\chi_{K_{n,m}} = \sum_{i=0}^{n} \text{sur}(n, i) \left(\binom{x}{i}\right) (x - i)^m$. And swapping m and n in this formula yields $\chi_{K_{m,n}} = \sum_{i=0}^{m} \text{sur}(m, i) \left(\binom{x}{i}\right) (x - i)^n$. Thus, the equality $\chi_{K_{n,m}} = \chi_{K_{m,n}}$ rewrites as $\sum_{i=0}^{n} \text{sur}(n, i) \left(\binom{x}{i}\right) (x - i)^m = \sum_{i=0}^{m} \text{sur}(m, i) \left(\binom{x}{i}\right) (x - i)^n$. \qed