Say \(X \) is the random variable that will drive market prices between today, time \(T \), and the next decision date, time \(T + \tau \) with an investment horizon of \(\tau \) (all time measured in years).

\[
P_{T+\tau} = g(X; P_T)
\]

and say that we have used historical data to estimate the parameters of the characterization of the market invariants \(Y \) under a different horizon, \(\tilde{\tau} \); e.g., from a timeseries sample \(\{P_T, P_{T-\tilde{\tau}}, P_{T-2\tilde{\tau}} \ldots \} \).

We know from the properties of characteristic functions that as long as increments are independent and identically distributed,

\[
\phi_X(t) = \phi_Y(t)^{\tilde{\tau}}
\]

If the first two moments exist, we also know that

\[
\begin{align*}
E(X) &= -i \left. \frac{d\phi_X}{dt'} \right|_0 \\
&= -i \left. \frac{\tau}{\tilde{\tau}} \phi_Y^{\tilde{\tau}-1} \frac{d\phi_Y}{dt'} \right|_0 \\
&= \frac{\tau}{\tilde{\tau}} E(Y)
\end{align*}
\]

and

\[
\begin{align*}
E\left(XX'\right) &= - \left. \frac{d^2\phi_X}{dt'dt} \right|_0 \\
&= -\left(\frac{\tau}{\tilde{\tau}} - 1\right) \left(\phi_Y\right)^{\tilde{\tau}-2} \left. \frac{d\phi_Y}{dt'} \frac{d\phi_Y}{dt} \right|_0 - \left(\frac{\tau}{\tilde{\tau}}\right)^{\tilde{\tau}-1} \left. \frac{d^2\phi_Y}{dt'dt} \right|_0 \\
&= \frac{\tau}{\tilde{\tau}} \left(\frac{\tau}{\tilde{\tau}} - 1\right) EYY' + \frac{\tau}{\tilde{\tau}} E(YY') \\
&= E\left(X\right)E\left(X'\right) + \frac{\tau}{\tilde{\tau}} \left(E(YY') - EYEY'\right)
\end{align*}
\]
Since the covariance is defined as
\[\text{cov} Y = \text{E} \left(XX' \right) - \text{E} X \text{E} X' \]
we have that
\[\text{cov} X = \frac{\tilde{\tau}}{\tilde{\tau}} \text{cov} Y \]
Furthermore, since
\[\text{std} Y = \text{diag} \sqrt{\text{diag} \text{diag} \text{cov} Y} \]
we have the “square-root rule” for time-scaling market invariants.
\[\text{std} X = \sqrt{\frac{\tilde{\tau}}{\tilde{\tau}}} \text{std} Y \]
This is valid regardless of the distribution of \(Y \) (as long as it has two moments).
Note that in general \(X \) will not belong to the same family of random variables as \(Y \).