Let us consider the expected shortfall index of satisfaction for a very simple portfolio: \(\alpha \) shares in an asset whose value today is \(p > 0 \) and whose horizon value \(P \) is lognormal.

Let us assume that the objective measure is profit; therefore in Meucci’s notation, we have

\[
\Psi_\alpha = \alpha M \\
= \alpha (P - p) \\
= \alpha (g(X) - p) \\
= \alpha p (e^X - 1)
\]

where the invariant total return is normal \(X \sim \mathcal{N}(\mu, \Sigma) \) with mean \(\mu \) and variance \(\Sigma > 0 \). The index of satisfaction is

\[
S(\alpha) = \frac{1}{1-c} \int_0^{1-c} Q_{\Psi_\alpha}(q) \, dq
\]

for confidence level \(c < 1 \) in terms of the quantile function for the objective value.

1 Exact Version

In this simple situation, we can actually calculate a relatively simple expression for the value of index of satisfaction. It will be useful to compare this below with the approximate value we get from the Cornish-Fisher expansion.

We proceed to evaluate the exact version by considering the CDF of the objective.

\[
F_{\Psi_\alpha}(z) = P \{ \Psi_\alpha < z \} \\
= P \{ \alpha p (e^X - 1) < z \} \\
= P \left\{ X \, \text{sgn} \alpha < \log \left(1 + \frac{z}{\alpha p} \right) \, \text{sgn} \alpha \right\} \\
= P \left\{ \frac{X - \mu}{\sqrt{\Sigma}} \, \text{sgn} \alpha < \frac{\log \left(1 + \frac{z}{\alpha p} \right) - \mu}{\sqrt{\Sigma}} \, \text{sgn} \alpha \right\} \\
= \Phi \left(\frac{\log \left(1 + \frac{z}{\alpha p} \right) - \mu}{\sqrt{\Sigma} \, \text{sgn} \alpha} \right)
\]
where $\Phi(\cdot)$ is the CDF of a standard normal.

The quantile, which is the inverse of the CDF, is therefore

$$Q_{\Psi, \alpha}(q) = \alpha p \left(e^{\mu + \text{sgn} \alpha \sqrt{\Sigma} \Phi^{-1}(q)} - 1 \right)$$

So can proceed to evaluate the index of satisfaction.

$$S(\alpha) = \frac{1}{1 - c} \int_0^{1-c} \alpha p \left(e^{\mu + \text{sgn} \alpha \sqrt{\Sigma} \Phi^{-1}(q)} - 1 \right) dq$$

$$= \alpha p \left(\frac{1}{1 - c} \int_0^{1-c} e^{\mu + \text{sgn} \alpha \sqrt{\Sigma} \Phi^{-1}(q)} dq - 1 \right)$$

$$= \alpha p \left(\frac{1}{1 - c} \int_{-\infty}^{\Phi^{-1}(1-c)} e^{\mu + \text{sgn} \alpha \sqrt{\Sigma} \phi(z)} dz - 1 \right)$$

where the last line is achieved by the change of variable $z = \Phi^{-1}(q)$ and $\phi(z) = \Psi'(z)$ is the density of a standard normal.

Since

$$e^{\mu + \text{sgn} \alpha \sqrt{\Sigma} \phi(z)} = e^{\mu + \frac{1}{2} \Sigma \phi \left(z - \text{sgn} \alpha \sqrt{\Sigma} \right)}$$

we have the final result,

$$S(\alpha) = \alpha p \left(e^{\mu + \frac{1}{2} \Sigma} \frac{1}{1 - c} \Phi \left(\Phi^{-1}(1 - c) - \text{sgn} \alpha \sqrt{\Sigma} \right) - 1 \right) \tag{1}$$

2 Short Horizon Approximation

For short horizons, the mean and variance of the total return invariant are small. To lowest order, the exact result in (1) can be approximated by

$$S(\alpha) \approx \alpha p \left(\mu - \text{sgn} \alpha \frac{\phi \left(\Phi^{-1}(1 - c) \right)}{1 - c} \sqrt{\Sigma} \right) \tag{2}$$

Let us spend a moment interpreting this. An investor will be more satisfied to be long ($\alpha > 0$) if the asset has a positive expected return ($\mu > 0$), and short ($\alpha < 0$) if the asset has a negative expected return ($\mu < 0$). In contrast, positive variance diminishes satisfaction for any non-zero position.

This all seems quite reasonable for a rational index of satisfaction.

3 Cornish-Fisher Approximation

It is unusual to have a simple analytic expression for the expected shortfall such as (1). This is why the Cornish-Fisher expansion can be useful in practice. In order to use this, we need several low central moments for the objective Ψ_{α}. In a Delta-Gamma setting, we can replace the objective by the quadratic

$$\Psi_{\alpha} = \alpha p \left(e^X - 1 \right) \approx \alpha p \left(X + \frac{1}{2} X^2 \right)$$
hence $\Theta_\alpha = 0$, $\Delta_\alpha = \alpha p$, and $\Gamma_\alpha = \alpha p$. Let us define a new objective to represent this approximation.

$$\Xi_\alpha = \alpha p \left(X + \frac{1}{2} X^2 \right)$$

Is is straight-forward to work out that the first several central moments of this are

$$E(\Xi_\alpha) = \alpha p \left(\mu + \frac{1}{2} \mu^2 + \frac{1}{2} \Sigma \right)$$

$$Sd(\Xi_\alpha) = |\alpha| p \sqrt{\Sigma} \sqrt{\left(1 + \mu\right)^2 + \frac{1}{2} \Sigma}$$

$$Sk(\Xi_\alpha) = 3 \sgn \alpha \sqrt{\Sigma} \frac{(1 + \mu)^2 + \frac{1}{2} \Sigma}{\left((1 + \mu)^2 + \frac{1}{2} \Sigma\right)^{3/2}}$$

The third-order Cornish-Fisher expansion for expected shortfall in general is

$$S(\alpha) \approx E(\Xi_\alpha) + Sd(\Xi_\alpha) \left(z_1 + \frac{z_2 - 1}{6} Sk(\Xi_\alpha) \right)$$

with coefficients

$$z_1 = \frac{1}{1 - c} \int_0^{1-c} \Phi^{-1}(q) \, dq = -\frac{\phi \left(\Phi^{-1}(1 - c) \right)}{1 - c}$$

$$z_2 = \frac{1}{1 - c} \int_0^{1-c} \Phi^{-1}(q)^2 \, dq = 1 - \frac{\phi \left(\Phi^{-1}(1 - c) \right)}{1 - c} \Phi^{-1}(1 - c)$$

depending on the confidence level $c < 1^1$.

Putting this together, we get a third expression for the index of satisfaction.

$$S(\alpha) \approx \alpha p \left(\mu + \frac{1}{2} \mu^2 + \frac{1}{2} \Sigma \right) - |\alpha| p \sqrt{\Sigma} \frac{\phi \left(\Phi^{-1}(1 - c) \right)}{1 - c} \cdot \left(\sqrt{\left(1 + \mu\right)^2 + \frac{1}{2} \Sigma} + \frac{1}{2} \sgn \alpha \frac{(1 + \mu)^2 + \frac{1}{2} \Sigma}{\left((1 + \mu)^2 + \frac{1}{2} \Sigma\right)^{3/2}} \Phi^{-1}(1 - c) \sqrt{\Sigma} \right)$$

This result agrees with (2) to lowest order in μ and Σ.

1The trick to these integrals is to realize that $\phi'(z) = -z \phi(z)$.
4 Modeling Default

Our horizon asset value P is bounded below by zero in this set-up. But if this is a model for a financial asset, we probably need to consider how the possibility of default would change the value of the expected shortfall. An amendment to the market model to consider is

$$\Psi' = \alpha p (Ye^X - 1)$$

where $X \sim N(\mu, \Sigma)$ as before\(^2\), but now we add an independent default indicator $Y \sim \text{Bern}(1 - h)$ for default probability h.

\(^2\)Since we cannot observe default events in the historical record for the total return, there is no reason to alter the objective model for the invariant.