Common Distributions
MFM Practitioner Module:
Risk & Asset Allocation

John Dodson

September 19, 2012
Outline

Taxonomy
Finite Support
Countable Support
Interval Support
Half-line Support
Unbounded Support
Common Transforms
Common Mixtures
Non-Parametric Distributions
Multivariate Distributions
Below is a taxonomy of common distributions, classified primarily by the topology of their support.

- **finite**
 - Dirac
 - Bernoulli
- **countable**
 - binomial
 - geometric
 - Poisson
- **interval**
 - uniform
 - beta
- **half-line**
 - exponential
 - gamma
- **unbounded**
 - normal
 - Cauchy
 - (Lévy) stable
- **transforms**
 - (generalized) Pareto
 - inverse gamma
 - lognormal
- **mixtures**
 - (Gosset) Student t
 - negative-binomial
- **non-parametric**
 - empirical
Finite Support

Let us start our tour by considering two special classes of random variables.

Bernoulli

A Bernoulli r.v. is a “bit”. Its sample space can be characterized by

- 0/1, T/F, heads/tails, win/lose, up/down

and there are only four possible events (**what are they?**). It has only one parameter (not necessarily equal to \(\frac{1}{2} \)).

Dirac

The sample space for a Dirac r.v. is, in principle, \(\mathbb{R} \); but the only event that has any mass is the singleton set \(\{x_0\} \), where \(x_0 \) is the only parameter. It can be thought of as the degenerate continuous r.v. We write its density as \(f_X(x) = \delta(x - x_0) \), which can be represented as a spike.
Countable Support: Discrete Sample Space

Binomial

If we think of a Bernoulli r.v. as having sample space \{0, 1\}, the sum of \(n\) \(\text{Bern}(p)\) r.v.’s is a \(\text{bin}(n, p)\) and its sample space is \{0, 1, \ldots, n\}. From combinatorics, we know

\[
P\{i\} = \binom{n}{i} p^i (1 - p)^{n-i} \quad \forall i \in \{0, 1, \ldots, n\} \subset \mathbb{Z}
\]

Stirling’s Approximation

A useful result from calculus is Stirling’s approximation, which says that \(n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\) for \(n \gg 1\). In particular,

\[
\binom{n}{i} \approx \frac{1}{\sqrt{2\pi n}} \left(\frac{i}{n}\right)^{-i-\frac{1}{2}} \left(1 - \frac{i}{n}\right)^{-n+i-\frac{1}{2}}
\]

for large \(n, i\).
Countable Support: Discrete Sample Space

geometric

A geometric r.v. is also related to a sequence of Bernoulli r.v.’s. In terms of the coin toss analogy, it is the length of the “streak” of tails tossed before the next head appears. Again from combinatorics, we know

\[P\{i\} = p(1 - p)^i \quad \forall i \in \{0, 1, \ldots\} \]

- Notice that the sample space here is countably infinite. One could observe a streak of any length for \(0 < p < 1 \).
- Notice also that the process underlying this model is **memoryless**. The fact that one has already observed a streak of length \(n \) is irrelevant: the only parameter is \(p \), the chance of breaking the streak on the next toss.
- The length of \(k \) streaks is a negative binomial r.v.
Another notable r.v. whose sample space is the nonnegative integers is the Poisson.

Poisson

Consider a binomial r.v. with a very large sample space but a very small probability of occurrence. If we take the limit $n \to \infty$ but we fix $p = \lambda/n$, we get

$$P\{i\} = e^{-\lambda} \frac{\lambda^i}{i!}$$

using Stirling’s Approximation and the limit definition of the exponential function,

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x \quad \forall x \in \mathbb{R}$$

Analogously, we shall see later that the interval *between* rare events is the limiting case of a geometric r.v.
Interval Support

Now let’s move on the r.v.’s whose sample space is a segment of the real line, traditionally taken to be [0, 1].

uniform

The probability of observing a value of a uniform r.v. between $0 \leq a < b \leq 1$ is equal to $b - a$.

- Any particular value between zero and one is equally likely to be observed.
- Imagine a binary decimal, e.g. 0.0110..., where each bit to the right of the decimal place is Bern($\frac{1}{2}$). This is a uniform r.v.
- All modern computer systems can generate an almost-endless stream of uniform (pseudo)-random variates, which can be used for generating samples of other r.v.’s using transformation techniques.
Interval Support

beta

A beta r.v. is parameterized by two continuous parameters, \(\alpha, \beta > 0 \). The scale factor for the density involves the Gamma function.

\[
f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1 - x)^{\beta-1} \quad \forall x \in [0, 1]
\]

There is a deep connection between the beta and binomial. The formulæ for the densities are essentially the same; but instead of describing the count, the beta describes the probability.

- The beta is a good model for an unknown probability.
- The beta is also a good model for an unknown fraction.
- The uniform is a special case, \(\text{beta}(1, 1) \sim U([0, 1]) \).
Half-line Support

exponential

The limiting case of the geometric with \(p = \frac{\lambda}{n} \) and \(n \to \infty \) is the exponential. Its distribution function is simply

\[
F_X(x) = 1 - e^{-\lambda x} \quad \forall x \geq 0
\]

Differentiating, we get the density.

\[
f_X(x) = \lambda e^{-\lambda x} \quad \forall x \geq 0
\]

- Note that the mode of an exponential r.v. is zero.
- The minimum of \(n \exp(\lambda) \) r.v.’s is \(\exp(n\lambda) \)
- The interval between arrivals of a Poisson process is exponential.
One can arrive at a gamma r.v. by several disparate tracks. Here, we will approach it as a sum of exponentials.

gamma

Since the characteristic function of $Y \sim \exp(\lambda)$ is

$$\phi_Y(t) = (1 - \frac{it}{\lambda})^{-1} \text{ (prove)},$$

the characteristic function of the sum of k exponential r.v.'s is

$$\phi_{Y_1 + \ldots + Y_k}(t) = (1 - \frac{it}{\lambda})^{-k}.$$ We can apply the Fourier transform to get the density of $X = Y_1 + \ldots + Y_k$,

$$f_X(x) = \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x} \quad \forall x \geq 0$$

Later, we will see that this is also the density of a sum of squared normals\(^1\), and, notably, a natural description for the space of random positive-definite matrices.

\(^1\)which is how Meucci introduces it.
We have already talked about the normal, whose reputation derives from the Central Limit Theorem. But not every r.v. has a finite variance. The simplest example of an unbounded r.v. without a finite variance is the Cauchy.

Cauchy

The standard version\(^2\) of the Cauchy has the density

\[
 f_X(x) = \frac{1}{\pi} \frac{1}{1 + x^2}
\]

whose graph looks like that of a normal; but statistically it is nothing like a normal.

- The standard Cauchy has the characteristic function
 \[
 \phi_X(t) = e^{-|t|}.
 \]
- The ratio of two normal r.v.'s is a Cauchy.

\(^2\)Any affine transformation of a Cauchy is still a Cauchy.
stable

The Cauchy is a special case of the (Lévy) stable family. Not only do stable r.v.’s lack a variance, but (excepting the Cauchy) they also lack a tractable density. The standardized stable characteristic function is

\[
\phi_X(t) = \begin{cases}
 e^{-|t|^{\alpha}(1-\text{sgn}(t)i\beta\tan(\alpha\pi/2))} & \alpha \neq 1 \\
 e^{-|t|(1+\text{sgn}(t)i\beta(2/\pi)\log|t|)} & \alpha = 1
\end{cases}
\]

for parameters \(0 < \alpha < 2\) and \(-1 < \beta < 1\).

- The Cauchy corresponds to \(\alpha = 1\) and \(\beta = 0\)
- \(\beta \geq 0\) allows for the density to be asymmetric.
- The limit \(\alpha \to 2\) is \(\mathcal{N}(0, 2)\). The limit \(\alpha \to 0\) is \(\delta(0)\).
Pareto

A basis for the concept of power laws is a result about the frequency of extreme events. This has at its heart a (generalized) Pareto r.v. which is an exponential of an exponential, \(\log (1 + \xi X) \sim \exp (1/\xi) \).

The resulting distribution function is

\[
F_X(x) = 1 - (1 + \xi x)^{-1/\xi} \quad \forall \begin{cases}
0 \leq x \\ 0 \leq x \leq -\frac{1}{\xi}
\end{cases} \quad \xi \geq 0 \\
ξ < 0
\]

- \(\xi \) is sometimes called the tail index
- note that if \(U \sim U(0, 1) \), then \(\frac{U^{-\xi} - 1}{\xi} \sim \text{Pareto}(\xi) \)
The gamma is a reasonable model for an unknown scale factor. But sometimes your application will call for dividing rather than multiplying.

Inverse gamma

It is a simple matter to evaluate the density of the reciprocal of a gamma r.v.,

\[f_X(x) = \frac{\lambda^k}{\Gamma(k)} x^{-1-k} e^{-\lambda/x} \quad \forall x > 0 \]

for parameters \(\lambda > 0 \) and \(k > 0 \).

- the inverse gamma comes up in Bayesian analysis
- we will see that it is a natural description for an unknown variance
Common Transforms

Since most assets cannot become liabilities, the support for future asset values (or prices) is \mathbb{R}^+ (or some subset). Furthermore, since holdings values are usually price × quantity, nominal prices are rarely important. Hence a natural model for the future value of an asset is as a lognormal r.v.

lognormal

The logarithm of a lognormal r.v. is normal. It has a density

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{e^{-\frac{\log(x/\mu)^2}{2\sigma^2}}}{x} \quad \forall x > 0$$

for parameters $\mu > 0$ and $\sigma > 0$.

- Note that, unlike the normal, the expected value of a lognormal r.v. involves both parameters: $E X = \mu e^{\frac{1}{2}\sigma^2}$.
Common Mixtures

The Student r.v. is not traditionally introduced as a mixture, but this interpretation will be useful to us later.

(Gosset) Student t

Consider a normal r.v. with an unknown variance close to one. If the variance is a draw from an inverse gamma,

\[X \mid \sigma^2 \sim N(0, \sigma^2) \]

\[\sigma^2 \sim \text{Gamma}^{-1} \left(\frac{\nu}{2}, \frac{\nu}{2} \right) \]

we can write down the resulting unconditioned density.

\[f_X(x) = \frac{\Gamma \left(\frac{\nu+1}{2} \right)}{\Gamma \left(\frac{\nu}{2} \right) \Gamma \left(\frac{1}{2} \right) \sqrt{\nu}} \left(1 + \frac{x^2}{\nu} \right)^{-\frac{(\nu+1)}{2}} \]

For historical reasons, if the parameter \(\nu > 0 \) is an integer, the r.v. is said to have \(\nu \) degrees of freedom.
Common Mixtures

If you are working with an r.v. that is Poisson, but you only have an estimate for the parameter, one approach is to say that the true parameter is a draw of a gamma r.v. which you can confidently characterize.

negative binomial

This is called the gamma-Poisson mixture, and the result is called the negative binomial. The hierarchical model is

\[X | \lambda \sim \text{Poisson}(\lambda) \]
\[\lambda \sim \text{Gamma}\left(k, \frac{p}{1 - p}\right) \]

with the result

\[P_X \{i\} = \frac{\Gamma(i + k)}{i! \Gamma(k)} p^k (1 - p)^i \quad \forall i \in \{0, 1, \ldots\} \]
Non-Parametric Distributions

A modern trend in statistics is to move away from parametric descriptions towards non-parametric descriptions.

empirical

The most natural non-parametric description of a r.v. X based on a dataset $\{x_1, x_2, \ldots, x_n\}$ is the empirical r.v.

$$f_X(x) = \frac{1}{n} \sum_{i=1}^{n} \delta (x - x_i)$$

$$F_X(x) = \frac{1}{n} \sum_{i=1}^{n} H (x - x_i)$$

► This can be regularized by replacing the Dirac deltas by normal densities with sufficiently small variances. This is also termed kernel smoothing.
Multivariate Distributions

Many of the univariate distributions can be generalized to a vector-valued sample space

- stable family and related, including the normal, lognormal, Student, and Cauchy
- discrete and empirical
- uniform

For the uniform, this is just a matter of defining the support in \mathbb{R}^n and normalizing appropriately. For the others, often the replacement

$$\left(\frac{X - \mu}{\sigma}\right)^2 \rightarrow (X - \mu)'\Sigma^{-1}(X - \mu)$$

and normalization is all that is required to lift the sample space from \mathbb{R} to \mathbb{R}^N.

- A multivariate density can always be used as a basis for a copula even if you prefer to use others margins.
Multivariate Distributions

Wishart

An important matrix-valued random variable is the Wishart,

\[
\phi_W(\omega) = |I - 2i\omega T|^{-\nu/2}
\]

where the parameter \(T \in \mathbb{R}^{N \times N} \) is positive-definite and \(\nu > N - 1 \) (need not be an integer).

The Wishart generalizes the Gamma in the sense that if \(X \sim W(\nu, T) \), for constant vector \(a \neq 0 \) the scalar

\[
\frac{a'Xa}{a'Ta} \sim \text{Gamma} \left(\frac{\nu}{2}, \frac{1}{2} \right)
\]

In particular, \(E(a'Xa) = \nu a'Ta \) and

\[
\text{var} (a'Xa) = 2\nu a'Ta
\]

▶ This will be a useful for estimating covariances.