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Problems

Solutions to these problems are due at the beginning of our last session, which is 5:30 PM on Monday,
October 25. Please turn in your solutions to the TA. Include your U of Minn. student identification number
on your submission to facilitate recording marks in the Canvas learning management system. Also include
the names of any classmates you consulted with in developing your solutions.

This problem is about tail dependence and the residual risk of hedged positions.
Consider the expected shortfall on a portfolio with loss

L = eX1 − eX2

where X = (X1, X2)
′ is a random variable in R2 representing the assets’ log-returns.

Even if we had formulaic characterizations (e.g. parametric density functions) for the log-returns, we
generally cannot translate these into formulaic characterizations for the portfolio loss. So we can at best
estimate risk metrics based on expansions or simulations. For this problem, we will use simulation. That
means we need to generate (pseudo-)random variates forX1 andX2 and assemble them into variates for the
loss to create an empirical distribution. Risk metrics can be estimated from this empirical distribution.

Fix the marginal distributions as particular members of the location-scale family of the symmetric NRIG
with shape parameter g = 2.,

Xi − 0.002

0.02
∼ NRIG(2.)

for i = 1, 2, and the concordance in terms of Kendall’s tau or pseudo-correlation ρ,

τ =
2

π
sin−1 ρ = 0.8

Consider two different copulas: the Gaussian copula and the Student’s-t4 copula.
Draws from a normal copula can be generated by drawing from a bivariate normal1 and applying the

marginal distribution function to get results in (0, 1)× (0, 1).
Draws from a Student’s-t4 copula can be generated by drawing from a bivariate Student’s-t4 and applying

the marginal distribution function2.
1If (X,Y )′ are i.i.d. mean-zero normal, then (X, θX +

√
1− θ2Y )′ for −1 ≤ θ ≤ 1 are also bivariate normal with the same

marginals.
2The distribution function of a (univariate) Student’s-t4 r.v.X is P(X < x) = 1

2

(
1 +

x(6+x2)
(4+x2)3/2

)
.
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1. Estimate the 99% value-at-risk and expected shortfall for this portfolio under the Gaussian copula.
(4 points)

2. Estimate the 99% value-at-risk and expected shortfall for this portfolio under the Student’s-t4 copula.
(6 points)

Hints

One way of generating bivariate Student’s-t4 variates is to divide bivariate normal variates by the square root
of the average of four squared independent normals variates.

Since it is easy to make mistakes in generating copula draws, it is a good idea to verify your work by
checking that the draws are marginally uniform in (0, 1). For example, their sample means should be near
1/2, and their sample variances should be near 1/12.

In order to convert copula draws into log-returns, you will need to evaluate the quantile function (the
inverse CDF) of the NRIG. Unfortunately, this is expensive to compute. If we need to construct both the
distribution and the inverse numerically, using the Newton-Raphson method for the inverse is an obvious
technique to consider because we know that the distribution is monotonic and we have ready access to its
derivative (the density).

The general updating scheme to approximate a root x⋆ : h(x⋆) = 0 is xi+1 ← xi − h(xi)/h
′(xi). In

our case, h(x) =
∫ x
−∞ f(x′) dx′ − p for probability density f(·); so, for a symmetric density, the scheme is

x1 = 0 and

xi+1 ← xi −
(

1
2 − p+

∫ xi

0
f(x′) dx′

)
/f(xi)

In general the Newton-Raphson method has quadratic convergence. The error seems to approach ma-
chine precision in four or five iterations.

Solution

Simulation is required to analyze the properties of the loss here, so it is primarily an exercise in scientific
computing. To start, I defined the main constants.

"returns mean"
μ = 0.002

"returns deviation"
σ = 0.02

"returns NRIG shape"
g = 2.

"returns Kendall correlation"
τ = 0.8

"returns pseudo-correlation"
ρ = sin(pi/2*τ)
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"simulation size"
N = 100_000

"empirical VaR boundary"
N99 = floor(Int,0.99N)

I then created bivariate normal variates with the given correlation (ρ ≈ 0.951), by combining independent
ones, and Gaussian copula draws by applying the marginal distribution function to each.

"correlated standard normal variates"
z = randn(N,2)*[1 ρ;0 sqrt(1-ρ^2)]

"gaussian copula draws"
u_gauss = erfc.(z/-sqrt(2))/2

Note here in the expression for z that Julia (like Matlab) treats multiplication of arrays as matrix multipli-
cation (contraction on inner indices). Here, I am multiplying on the right by what amounts to the (upper)
Cholesky decomposition of the correlation matrix:(

1 ρ

0
√
1− ρ2

)′(
1 ρ

0
√
1− ρ2

)
=

(
1 ρ
ρ 1

)
As noted in the hint, it is always a good idea at this stage to apply some basic quality assurance tests. I

checked the ranges, means, and variances of the margins, and got good agreement with the expected results.
I also checked the sample rank correlation, and got τ̂ ≈ 0.799, which is in good agreement with the design.

For the t4 copula, I started by converting my bivariate normal sample to a bivariate Student’s-t sample,
by dividing each by an independent χ4 (constructed by averaging the squares of four independent normals).

"correlated Student's-t₄ variates"
t4 = z./sqrt.(mean(randn(N,4).^2,dims=2))

The margins of this are also Student’s-t4; so to extract copula draws apply the Student’s-t4 distribution
function:

"t₄ distribution function"
t4_dist = x -> (1+(x*(6+x^2))/((4+x^2)^(3/2)))/2

"t₄ copula draws"
u_t4 = t4_dist.(t4)

Again, I checked the results for the expected ranges, means, marginal variances, and the rank correlation.
Samples from both copulas are plotted in Figure 1.
Now that I have the copula draws, I need to covert them into returns by applying the NRIG quantile. This

is the most algorithmically complex part of the exercise, because there is no simple formula for the inverse
(cumulative) distribution of an NRIG.

We discussed this challenge as part of this week’s case, and I am borrowing the implementation from
there.
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Figure 1: Samples from the two copulas for the assignment

"standard NRIG density"
NRIG_dens = (x,g) -> 1/π*exp(g)*sqrt(1+g)*besselk(0,sqrt(g^2+(1+g)*x^2))

"standard NRIG quantile"
function NRIG_quan(p,g)
# Newton-Raphson method to invert the standard NRIG distribution function

x₁ = 0. # initial guess
x₂ = 0.
for n = 1:20

f₁ = NRIG_dens(x₁,g)
x₂ = x₁-(1/2-p+quadgk(x->NRIG_dens(x,g),0.,x₁)[1])/f₁
if abs(x₂-x₁) < 1.E-12

break
end
x₁ = x₂

end
return x₂

end

Note that my version of QuadGK.quadgk returns two values: an estimate of the integral and an upper
bound on the absolute error of the estimate (which I am ignoring here).

Applying the NRIG quantile is by far the most computationally intense part of the exercise. On my
MacBook Air the following two lines each took about 15 seconds to run, compared to about 1 millisecond
for the same calculation with a standard normal quantile function instead.

ret_gauss = μ.+σ*NRIG_quan.(u_gauss,g)
ret_t4 = μ.+σ*NRIG_quan.(u_t4,g)

The loss scenarios are therefore
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L_gauss = sort(exp.(ret_gauss)*[1;-1])
L_t4 = sort(exp.(ret_t4)*[1;-1])

Finally, we can treat the sorted scenarios as an empirical distribution function and evaluate the risk
metrics.

VaR_gauss = L_gauss[N99]
VaR_t4 = L_t4[N99]
ES_gauss = mean(L_gauss[N99:end])
ES_t4 = mean(L_t4[N99:end])

Results are presented below.

Gaussian t4
VaR0.99 0.0154 0.0166
ES0.99 0.0183 0.0219

Table 1: Risk metrics for the hedged portfolio

Discussion

It is interesting that tail dependence in this setting has more of an effect on expected shortfall then it does on
value-at-risk. We could summarize the results by concluding that the probability of experiencing an extreme
loss, say greater than about 1.6%, does not depend very much on the model for tail dependence. But the
magnitude of that loss does: a reasonably large tail dependence (provided by the t4 copula in this example)
causes extreme losses about 20% larger on average than under no tail dependence.

You might imagine that tail dependence would have the opposite effect: that a contagion would help to
keep the long and the short aligned. But, that is not what we see. Tail dependence actually makes the hedge
perform worse, not better—at least under a coherent risk metric.

It is perhaps more interesting to compare the risk of the hedged position to that of the unhedged position.
Using the same scenarios, I got that the 99% expected shortfall on the bare long (whose return isX2) is about
5.9%. A position with returnX1 would seem to be an excellent candidate for a hedge: The correlation is 0.95
and the volatility is identical. But the hedged portfolio still has expected shortfall somewhere between 1.8%
and 2.2%. This apparently excellent hedge has only eliminated about two-thirds of the risk. And worse: the
new risk, which we call “basis risk”, is difficult to measure3, difficult to explain, and impossible to manage.

3Any estimate of tail dependence present in a real-world sample must face the challenge that tail events are, by definition, rare.
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