Iterated Partial Derivatives

1. Let \(f(x, y) = 2xy + 2y^2 + y - 5x^2 \). Find \(\nabla f \) (we computed this on a previous worksheet).

2. Let \(f(x, y) = 2xy + 2y^2 + y - 5x^2 \) (as above). Use your answer to the previous question to compute \(f_{xy}, f_{xx}, \) and \(f_{yy} \).

3. Let \(h(x, y) = \left(\frac{yx^2 + 1}{2y^2 x} \right) \). Find \(\mathbf{D} h(x, y) \) (we computed this on a previous worksheet).

4. Given \(h(x, y) = \left(\frac{yx^2 + 1}{2y^2 x} \right) \) (as above). Use your answer from the previous question to compute the derivatives with respect to all the entries of \(\mathbf{D} h(x, y) \).
Double Integrals

5. Let $f(x, y) = x^2y^2$. Integrate $f(x, y)$ over the unit square $R = [0, 1] \times [0, 1]$.

6. For the same f as in the previous example, integrate over the triangle bounded by the x-axis, y-axis and the line $y = -x + 1$.

7. Let $g(x, y) = \sin x + y^2$. Integrate $g(x, y)$ over the rectangle $R = [0, \pi] \times [0, 1]$.