Computational Exercises

1. Find the parametric equations of the line through (1, 2, 3) and parallel to the vector $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

 \[
 \begin{align*}
 x &= 3t + 1 \\
 y &= -2t + 2 \\
 z &= t + 3
 \end{align*}
 \]

2. Write a set of parametric equations for the line with symmetric form

\[
\frac{x+1}{2} = \frac{y-1}{-7} = \frac{z+10}{4}.
\]

 \[
 \begin{align*}
 x &= 2t - 1 \\
 y &= 1 - 7t \\
 z &= 4t - 10
 \end{align*}
 \]

3. Parametrize the line described by $y = 3x + 1$.

 \[
 \begin{align*}
 x &= t \\
 y &= 3t + 1
 \end{align*}
 \]

4. Consider the line defined by $f(t) = (t, 3t + 1, -4t)$. Does this intersect with the plane $x + y + z = 1$?

 \[
 x + y + z = t + (3t + 1) + (-4t) = t + 3t - 4t + 1 = 1
 \]

 so the answer is yes.
Vicki the Vulture Flies to Vincent Hall

5. Vicki the Vulture is flying over the Mississippi with trajectory given by parametric equations

\[f(t) = \begin{cases}
 t + 1 \\ 2t - 2 \\ 20
\end{cases} \]

At the same time, a flock of butterflies is flying in a formation shaped like

\[(t + 1, 2s - 7 + 3t, 20) \]

If Vicki does not change course, will she fly through the butterflies? If so, when?

This is a question of the intersection between a line and a plane. In this case its easy because setting \(s = \frac{5 - t}{2} \) gives \(y = 2(\frac{5 - t}{2}) - 7 + 3t = 2t - 2 \) on the plane. So Vicki is flying with the butterflies.

6. A student is standing on the bridge. If the student is at position \((4, 4, 10)\). When does Vicki pass the student? What is Vicki's position when she passes the student?

Q: When does Vicki intersect the plane \((4, 4, 5)\)?

A: When \(t + 1 = 4 \), \(2t - 2 = r \), and \(20 = s \).

Note: \(t + 1 = 4 \) forces \(t = 3 \). So \(2(3) - 2 = 4 = r \)

Thus, Vicki passes directly over the student when \(t = 3 \); \((4, 4, 20)\)

7. Vicki spots a left over sandwich on the quad in front of Vincent Hall. Given that she is 20 feet above the ground and circles down in a circle of radius of 5, model her descent using parametric equations.

There are many solutions. Here is one:

\[x = 5 \cos t \]
\[y = 5 \sin t \]
\[z = 20 - t \]