Conservative Vector Fields

Theorem 1. The vector field $F = \nabla f$ is a conservative vector field if and only if for any two paths c_1, c_2 with the same endpoints,

$\int_{c_1} F \cdot ds = \int_{c_2} F \cdot ds$

Theorem 2. Let F be a conservative vector field with potential function f. Let c be a path with endpoints a and b. Then

$\int_c F \cdot dS = \int_c F \cdot ds$

Exercises.

1. Let $F(x, y, z) = \left(\frac{2x^2 y + 4y^2}{4x^3 + 2y + 8xy} \right)$. Evaluate $\int_c F \cdot dS$ where $c(t) = \left(\frac{\cos \pi t}{t^3 + 1} \right)$

2. Is $F(x, y, z) = \left(\frac{2xyz^3 + z}{x^2z^3 - e^z \sin y} \right)$ a conservative vector field? Why or why not?

(You can probably figure this out by inspection, but I want you give some mathematical evidence, e.g. if the answer is “no,” then do some line integrals.)

3. Suppose F is any conservative vector field and C is any simple, closed curve. Evaluate $\int_C F \cdot dS$.
In-Class Examples

1. Let’s integrate
\[\int_{\frac{1}{2}}^{\frac{5}{2}} 2t \sin \pi t + \pi t^2 + 4\pi (\sin \pi t)(\cos \pi t) \, dt. \]

Our theorem tells us that if we can rephrase this as a path integral AND the vector field is conservative, then we can choose an easier path and get an easier integral. In this case we have \(F = \left(\frac{2xy}{x^2 + 4y} \right) \) and \(c(t) = (t, \sin \pi t) \) for \(t \in \left[\frac{1}{2}, \frac{5}{2} \right] \). Our v.f. is conservative with potential function
\[f(x, y) = x^2 y + 2y^2. \]

So our theorem applies! Endpoints of \(c(t) \)?
\[c \left(\frac{1}{2} \right) = \left(\frac{1}{2}, 1 \right) \]
\[c \left(\frac{5}{2} \right) = \left(\frac{5}{2}, 1 \right). \]

So instead let’s use the straight line path \(d(t) = (t + \frac{1}{2}, 1) \) for \(t \in [0, 2] \). So our integral becomes
\[\int_{0}^{2} 2t + 1 \, dt = t^2 + t \bigg|_{0}^{2} = 6. \]

But we can say something even faster. Theorem 2 tells us that we only need to look at the potential function and the end points...
\[f \left(\frac{5}{2}, 1 \right) - f \left(\frac{1}{2}, 1 \right) = \frac{33}{4} - \frac{9}{4} = 6. \]

2. By our theorem, \(F(x, y) = (-y, x) \) is not a gradient vector field. Consider
\[c_1(t) = (t, t) \quad \text{for } t \in [0, 1] \]
\[c_2(t) = (t, t^2) \quad \text{for } t \in [0, 1]. \]

Doing the integrals: we get 0 and \(\frac{1}{4} \). So by Theorem 1, this vector field is not conservative.