For the next several problems we will be working with the function $f(x, y) = xy^3$

- Evaluate the line integral $\int_C f(x, y) ds$ over the curve $C(t) = (4 \sin t, 4 \cos t, 3t)$
 (If you are confused how to start, here are some steps to try)
 - Write out $f(x(t))$ so that f is a function of only t
 - Compute $C'(t)$
 - Setup the line integral
 - Evaluate the line integral

- Redo the previous problem using the curve assigned by your TA.

Now rather than f being a scalar function, let g be a vector field given by $g(x, y) = (y, -x)$.

- Compute \mathbf{g}_C for a circle with radius 1 centered at the origin using the line integral. (Again, here are some steps to follow if you don’t know where to start).
 - Create a parametric equation for the curve C
 - Compute $C'(t)$
– Write out the equation of the vector field as you move along the curve.
– Evaluate the line integral

• Repeat the previous problem using Green’s theorem.

• Compute the area inside the quadrilateral with vertices (2, 0), (1, 2), (1, 1), and (−1, 1). (Try to compute using Green’s Theorem.)

• Find the area between the ellipse \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \) and the circle \(x^2 + y^2 = 25 \)