1. Use Green’s theorem to replace the line integral \(\oint_C (y - \sin(y) \cos(y))dx + 2x \sin^2(y)dy \) with a double integral, where \(C \) is the counterclockwise path around the region bounded by \(x = -1, x = 2, y = 4 - x^2, \) and \(y = x - 2. \)

2. Evaluate \(\oint_C (x^2 - y)dx + (x - y^2)dy \) where \(C \) is the counterclockwise path around the region bounded by \(y = x^2 \) and \(y = 6x + 7. \)

3. Find the area of the region enclosed by the parametric equation

\[
p(\theta) = (\cos(\theta) - \cos^2(\theta), \sin(\theta) - \cos(\theta) \sin(\theta)) \quad \text{for} \quad 0 \leq \theta \leq 2\pi
\]

4. Evaluate \(\int_C -e^y \sin(x)dx + e^y \cos(x)dy + dz \) over the curve \(C \) where \(C \) is the straight line from the point \((0, 0, 0)\) to \((\pi, \pi, 1)\).
5. Let \(F(x, y, z) = (x + y, y + z, x + z) \) be a vector valued function.

(a) Compute the divergence of the vector field.

(b) Compute the curl of the vector field.

(c) Is the vector field conservative?

6. Consider the integral \(\int_C F \cdot ds \) in two dimensions with \(F(x, y) = (F_1(x, y), F_2(x, y)) \).

(a) What conditions on the curve \(C \) and/or the vector field \(F \) do you need to use the fundamental theorem for line integrals to evaluate the integral.

(b) What conditions on the curve \(C \) and/or the vector field \(F \) do you need to use Green’s Theorem to evaluate the integral.