16.4#8
Use Green’s Theorem to evaluate the line integral along the given positively oriented curve.

\[\int_C xe^{-2x} \, dx + (x^4 + 2x^2y^2) \, dy \]

\(C \) is the boundary of the region enclosed by the parabolas \(y = x^2 \) and \(x = y^2 \). Green’s Theorem applies because \(C \) is the boundary of a closed region \(D \), which is most easily described in polar coordinates \(1 \leq r \leq 2 \) and \(0 \leq \theta \leq 2\pi \).

\[
\int_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_D \left[\frac{\partial}{\partial x} (x^4 + 2x^2y^2) - \frac{\partial}{\partial y} (xe^{-2x}) \right] \, dA
\]

\[
= \iint_D \left[4x^3 + 4xy^2 \right] \, dA
\]

\[
= \iint_D \left[4x(x^2 + y^2) \right] \, dA
\]

\[
= \int_0^{2\pi} \int_1^2 4r \cos \theta (r^2) \, dr \, d\theta
\]

\[
= \int_1^2 \int_0^{2\pi} 4r^4 \cos \theta \, d\theta \, dr
\]

\[
= \int_1^2 -4r^4 \sin \theta \bigg|_0^{2\pi} \, dr
\]

\[
= 0
\]

16.4#18
A particle starts at the point \((-2, 0)\), moves along the \(x \)-axis to \((2, 0)\), then along the semicircle \(y = \sqrt{4 - x^2} \) to the starting point. Use Green’s Theorem to find the work done on this particle by the force field \(\mathbf{F}(x, y) = (x, x^3 + 3xy^2) \).

We may use Green’s Theorem since \(C \) is a closed curve. If \(D \) is the region inside that curve, we may most easily describe \(D \) in polar coordinates by \(0 \leq \theta \leq \pi \) and \(0 \leq r \leq 2 \).

\[
\int_C \langle x, x^3 + 3xy^2 \rangle \cdot d\mathbf{r} = \iint_D \left[\frac{\partial}{\partial x} (x^3 + 3xy^2) - \frac{\partial}{\partial y} (x) \right] \, dA
\]

\[
= \iint_D \left[(3x^2 + 3y^2) - 0 \right] \, dA
\]

\[
= \int_0^\pi \int_0^2 3r^2 r \, dr \, d\theta
\]
\[
= \int_0^\pi \int_0^2 3r^3 \, dr \, d\theta \\
= \int_0^\pi \left. \frac{3}{4} r^4 \right|_0^2 \, d\theta \\
= \int_0^\pi 12 \, d\theta \\
= 12\pi
\]