Math 2263 Multivariable Calculus
Worksheet: Vectors and Matrices

Name: June 15, 2011

This worksheet is intended to give you practice performing basic computations with vectors and matrices.

1. Let \(\mathbf{a} = \langle 3, 4, -1 \rangle \) and \(\mathbf{b} = \langle -2, 4, -5 \rangle \). Compute each sum.
 (a) \(\mathbf{a} + 2\mathbf{b} \)
 (b) \(3\mathbf{a} - \frac{1}{2}\mathbf{b} \)

2. Let \(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3 \). Which expressions make sense?
 (i) \((\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}\)
 (ii) \(\mathbf{a}(\mathbf{b} \cdot \mathbf{c})\)
 (iii) \(\mathbf{a} \cdot \mathbf{b} + \mathbf{c}\)
 (iv) \(|\mathbf{a}|(\mathbf{b} \cdot \mathbf{c})\)
 (v) \(\mathbf{a} \cdot |\mathbf{a} \cdot \mathbf{c}|\)

3. Find the unit vector in the direction of each vector.
 (a) \(\langle 2, -3, 1 \rangle\)
 (b) \(\frac{2}{3}\mathbf{i} + \mathbf{j} - \frac{1}{2}\mathbf{k}\)

4. Find \(\mathbf{a} \cdot \mathbf{b}\) for each pair of vectors \(\mathbf{a}\) and \(\mathbf{b}\).
 (a) \(\mathbf{a} = \langle -4, 5, 2 \rangle, \mathbf{b} = \langle -3, 4, -5 \rangle\)
 (b) \(\mathbf{a} = \langle \frac{1}{2}, -1 \rangle, \mathbf{b} = \langle \frac{3}{2}, 3 \rangle\)
 (c) \(\mathbf{a} = -\mathbf{i} - 2\mathbf{k}, \mathbf{b} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}\)
 (d) \(\mathbf{a} = s\mathbf{i} + 2s\mathbf{j}, \mathbf{b} = -t\mathbf{i} + t^2\mathbf{j} + 3t\mathbf{k}\)
 (e) \(|\mathbf{a}| = 3, |\mathbf{b}| = 4\), the angle between \(\mathbf{a}\) and \(\mathbf{b}\) is 45°
5. Determine whether each pair of vectors is parallel, perpendicular, or neither.
 (a) \(\langle 4, 6 \rangle, \langle -3, 2 \rangle \)
 (b) \(\langle -5, 3, 7 \rangle, \langle 6, -8, 2 \rangle \)
 (c) \(-i + 2j + 5k, 3i + 4j - k\)
 (d) \(2i + 6j - 4k, -3i - 9j + 6k\)

6. Consider the points \(P(1, -3, -2), Q(2, 0, -4), R(6, -2, -5) \).
 (a) Find \(|a|, |b|, \) and \(|c|\), where \(a = \overrightarrow{PQ}, b = \overrightarrow{PR}, \) and \(c = \overrightarrow{QR}. \)
 (b) Find \(a \cdot b, a \cdot c, \) and \(b \cdot c. \)
 (c) Consider the triangle with \(P, Q, \) and \(R \) as vertices. Is this a right triangle? Give two arguments, one using the information from (a) and another using the information from (b).
7. Suppose \(A \) is a \(3 \times 2 \) matrix, \(B \) is a \(2 \times 3 \) matrix, \(C \) is a \(2 \times 2 \) matrix, and \(D \) is a \(1 \times 3 \) matrix. Which expressions make sense?

(i) \(AB \)
(ii) \(A^T B \)
(iii) \(DA \)
(iv) \(AD \)
(v) \(C A^T \)
(vi) \(\det(A) \)
(vii) \(\det(C) \)
(viii) \(\det(AC) \)
(ix) \(\det(BA) \)

8. Consider the matrices

\[A = \begin{pmatrix} 1 & 3 \\ 3 & 3 \\ 4 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 4 & -1 \\ 5 & 3 & -3 \end{pmatrix}. \]

(a) Find \(AB \).

(b) Find \(BA \).

9. Find all possible values of \(a \) if

\[
\begin{vmatrix}
-2 & a & 1 \\
-3 & 4 & a \\
3 & -1 & 1
\end{vmatrix} = 7.
\]
10. Consider the matrices

\[T = \begin{pmatrix} 2 & 4 \\ -3 & -1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & -5 \\ 2 & 1 \end{pmatrix}. \]

(a) Find \(\det(T) \).

(b) Find \(\det(U) \).

(c) Find \(\det(TU) \).

11. Consider the matrices

\[M = \begin{pmatrix} -3 & 2 & 1 \\ 1 & 3 & 5 \\ -4 & -1 & -2 \end{pmatrix}, \quad N = \begin{pmatrix} -2 & 4 & -1 \\ -5 & 3 & -3 \\ 1 & 2 & 1 \end{pmatrix}. \]

(a) Find \(\det(M) \).

(b) Find \(\det(N) \).

(c) Find \(\det(MN) \).

12. Looking at your work from the previous two problems, observe that in both cases we have \(\det(A)\det(B) = \det(AB) \). Prove that this is always true for \(2 \times 2 \) matrices. (In fact it is true in general! For extra fun, you might try proving the general case.)