1. (6 pts) For the pairs of random variables X and Y below, decide whether Y is $\sigma(X)$-measurable, X is $\sigma(Y)$-measurable, both, or neither. You do not have to justify your answer.

(a) $\Omega = \{\text{Alice, Annabelle, Candace, Caroline, Robert, Rhett}\}$. (The first four are female names, the last two are male names.) \mathbb{P} = uniform probability measure. $X : \Omega \rightarrow \{A, \ldots, Z\}$ gives the first letter of the name, $Y : \Omega \rightarrow \{A, \ldots, Z\}$ gives the last letter of the name.

(b) $\Omega = \{\text{permutations of the numbers 1, 2, and 3}\}$, meaning these three numbers written in some order without repetitions. \mathbb{P} is positive on each element of Ω. $X : \Omega \rightarrow \mathbb{R}$ computes (first number) - (second number) + (third number), $Y : \Omega \rightarrow \mathbb{R}$ writes the three numbers as the digits of a three-digit number. That is, $X(2, 1, 3) = 2 - 1 + 3 = 4$ and $Y(2, 1, 3) = 213$.

Solution:

(a) Y is X-measurable: if $X = A$ then $Y = e$, if $X = C$ then $Y = e$, and if $X = R$ then $Y = t$. X is not Y-measurable, because if $Y = e$, X could be either A or C.

(b) X is Y-measurable, since Y uniquely determines the permutation. Y is not X-measurable, because 2, 1, 3 and 3, 1, 2 are indistinguishable to X.

2. (9 pts) Sketch the CDF of the following measures. Make sure to indicate the values of any of the useful points.

(a) The uniform probability measure on the set $[-1, 1] \cup [3, 5]$.

(b) The measure assigning mass $\frac{1}{4}$ to each of $-1, 1, 3, 5$. (That is, $m(\{i\}) = 1/4$ if $i = -1, 1, 3, 5$, and $m(A) = 0$ if $A \cap \{-1, 1, 3, 5\} = \emptyset$.)

(c) The law of X, where X is a real-valued random variable defined as follows. Let $S = \{U, D\}^2$ with the uniform probability measure; $X(s)$ is the number of D’s in the sequence.

Solution: