1. Match the following measures on \(\mathbb{R} \) to the plots of their CDFs.

(a) The uniform probability measure on the set \([-3, -2] \cup [1, 5]\).
 \textbf{Answer:} C.

(b) The measure assigning mass \(\frac{1}{4} \) to each of \(-1, 1, 3, 5\). (That is, \(m\{i\} = 1/4 \) if \(i = -1, 1, 3, 5 \), and \(m(A) = 0 \) if \(A \cap \{-1, 1, 3, 5\} = \emptyset \).)
 \textbf{Answer:} B.

(c) The measure which assigns mass 1 to the point 3, and 0 otherwise. Formally, \(m(A) = 1 \) if 3 \(\in \) \(A \), and \(m(A) = 0 \) if 3 \(\not\in \) \(A \).
 \textbf{Answer:} A.

(d) The law of \(X \), where \(X \) is a real-valued random variable defined as follows. Let \(S = \{A, B\}^2 \) with the uniform probability measure (i.e. all one-element sets have the same measure); \(X(s) \) is the index of \(s \) in alphabetical order (so \(X(AA) = 1 \) and \(X(BB) = 4 \)).
 \textbf{Answer:} D.

(e) The law of \(X \), where \(X \) is a real-valued random variable defined as follows. Let \(S = \{U, D\}^2 \) with the uniform probability measure; \(X(s) = 3 \) for all \(s \in S \).
 \textbf{Answer:} A again.

(f) The law of \(X \), where \(X \) is a real-valued random variable defined as follows. Let \(S = \{A, B, C, D\} \) with the uniform measure, and let \(X(A) = 3 \), \(X(B) = -1 \), \(X(C) = 1 \), and \(X(D) = 5 \).
 \textbf{Answer:} B again.

(g) The law of \(X \), where \(X \) is a real-valued random variable defined as follows. Let \(S = [0, 1] \) with the uniform probability measure (i.e. \(m(A) = l(A) \) if \(A \subset S \)), and let \(X(s) = -3s + 2 \).
 \textbf{Answer:} E.

2. (8 pts) For each pair of random variables \((X, Y)\) below, decide whether \(Y \) is \(\sigma(X) \)-measurable, \(X \) is \(\sigma(Y) \)-measurable, both, or neither. \textbf{You do not have to justify your answer.}

(a) \(S = \{A, B, C\}^2 \) with the uniform probability measure (i.e. each sequence has measure \(1/9 \)). \(X : S \to \mathbb{R} \) is the index of the sequence in alphabetical order, \(Y : S \to \{A, B, C\} \) is the first letter of the sequence.
Answer: Y is $\sigma(X)$-measurable, since for each index there’s only one first letter. X is not $\sigma(Y)$-measurable, since here are multiple indices corresponding to a single first letter.

(b) $S = \mathbb{Z}_+$ with the probability measure $P(n) = e^{-\lambda}\lambda^n/n!$, $n \geq 0$. $X : S \to \mathbb{R}$ is given by $X(n) = n^3$, $Y : S \to \mathbb{R}$ is given by $Y(n) = n$.

Answer: The probability measure on S doesn’t matter at all for this question. X is $\sigma(Y)$-measurable, and Y is $\sigma(X)$-measurable, since given n I can find n^3 and given n^3 I can find n.

(c) $S = \mathbb{Z}$ with the probability measure given by $P(0) = 0$, $P(\pm n) = \frac{1}{2}e^{-\lambda}\lambda^{n-1}/(|n| - 1)!$, i.e. roughly half of the measure from above. $X : S \to \mathbb{R}$ is given by $X(n) = n^3$, $Y : S \to \mathbb{R}$ is given by $Y(n) = n$.

Answer: The probability measure on S still doesn’t matter. The random variables are still measurable in both directions, as there’s exactly the same information contained in the value of X as in the value of Y.

(d) $S = [0, 1] \times [0, 5]$ with the uniform measure, and for $s = (a, b) \in S$, $X(s) = a$, $Y(s) = b$.

Answer: Not measurable in either direction. Knowing the value of X tells me nothing about the value of Y, and knowing the value of Y tells me nothing about the value of X.