1. (15 pts) Let B_t be a Brownian motion. Let $X = B_1 + B_2$, and let $Y = B_4 - B_3$.

 (a) Find $E[X^3]$.

 (b) Find $\text{Cov}(X,Y)$.

 (c) Write down the joint distribution of X and Y. Expand any matrix products in your answer.

 Solution:

 (a) $X \sim N(0,4)$ has a distribution that’s symmetric around the origin, so $E[X^3] = 0$.

 (b) X depends on the values of Brownian motion up to time 2, Y depends on the values from time 3 forward, so X and Y are independent. $\text{Cov}(X,Y) = 0$.

 (c)

 $f_{X,Y}(a,b) = f_X(a)f_Y(b) = \frac{1}{4\pi} e^{-\frac{a^2}{4} - \frac{b^2}{4}}$.

2. (12 pts) For each of the following statements, determine whether they are true or false. You do not need to justify your answer. Below, B_t is a Brownian motion.

 (a) If $X = B_1$ and $Y = B_2$ then X and Y are independent. **F**

 (b) If $X = B_1$ and $Y = B_2$ then the distributions of X and Y are absolutely continuous with respect to each other (in both directions). **T**

 (c) If $X = B_1$ and $Y = B_2$ then $X^2 + Y$ is a normal random variable. **F**

 (d) If $X = B_1$ and $Y = B_2$ then $3X + 17Y$ is a normal random variable. **T**

 (e) If $X = B_1$ and $Y = B_2$ then X is $\sigma(Y)$-measurable. **F**, it’s measurable with respect to the σ-field that looks at everything up to time 2, but not with respect to B_2 alone.

 (f) If $X = B_1$ and $Y = B_2$ then $X + Y$ and $X - Y$ are independent. **F**, their covariance is $\text{Cov}(X+Y, X-Y) = 1 - 4 = -3$.

1