Place cells and receptive fields

Definitions

Definition

Place cells are neurons that become active in a preferred region with respect to the subject’s environment. A *receptive field* U_i is the region where the ith neuron is active.
Place cells and receptive fields

Definitions

Definition

Place cells are neurons that become active in a preferred region with respect to the subject’s environment. A *receptive field* U_i is the region where the ith neuron is active. A receptive field U_i is *convex* if $\forall x, y \in U$, the line segment $\overline{xy} \subset U$.
Definition

Place cells are neurons that become active in a preferred region with respect to the subject’s environment. A *receptive field* U_i is the region where the ith neuron is active. A receptive field U_i is *convex* if $\forall x, y \in U$ the line segment $\overline{xy} \subset U$.
Place cells and receptive fields

Definitions

Definition

Place cells are neurons that become active in a preferred region with respect to the subject’s environment. A *receptive field* U_i is the region where the ith neuron is active. A receptive field U_i is *convex* if $\forall x, y \in U$ the line segment $\overline{xy} \subset U$

The big question

Which codes can be idealized as receptive fields?
Neural Codes

Definition
Given neurons labelled \(\{1, ..., n\} = [n] \), define a neural code \(C \), to be a collection of binary words \(c = (c_1, ..., c_n) \). For any \(C \) and any \(c \in C \), define \(\text{supp}(c) \overset{\text{def}}{=} \{i \in \{1, ..., n\} \mid c_i = 1\} \) and, \(\text{supp}(C) \overset{\text{def}}{=} \{\text{supp}(c) \mid c \in C\} \).

Example
Let \(C = \{000, 010, 110, 001\} \). Then \(\text{supp}(C) = \{\emptyset, \{2\}, \{1, 2\}, \{3\}\} \).
Neural Codes

Definition
Given neurons labelled \{1, ..., n\} = [n], define a neural code \(\mathcal{C}\), to be a collection of binary words \(c = (c_1, ..., c_n)\). For any \(\mathcal{C}\) and any \(c \in \mathcal{C}\), define \(\text{supp}(c) \overset{\text{def}}{=} \{i \in \{1, ..., n\} | c_i = 1\}\) and, \(\text{supp}(\mathcal{C}) \overset{\text{def}}{=} \{\text{supp}(c) | c \in \mathcal{C}\}\).

Example
Let \(\mathcal{C} = \{000, 010, 110, 001\}\). Then \(\text{supp}(\mathcal{C}) = \{\emptyset, \{2\}, \{1, 2\}, \{3\}\}\).

Definition
simplicial complex \(\Delta(\mathcal{C}) \overset{\text{def}}{=} \{\sigma \subseteq \text{supp}(c) | \sigma \subseteq c \text{ for some } c \in \mathcal{C}\}\).

Example
\(\Delta(\mathcal{C}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3\}\}\).