Problem 1. Let \(h(x) = \sqrt{7 + \sin(x)} \).

1. Find functions \(f \) and \(g \) such that \(h = f \circ g \).
2. Compute \(f' \).
3. Compute \(f' \circ g \).
4. Compute \(g' \).
5. Use the Chain Rule to compute \(h' \).

Problem 2. Let \(h(x) = \cos(x^2) \).

1. Find functions \(f \) and \(g \) such that \(h = f \circ g \).
2. Compute \(f' \).
3. Compute \(f' \circ g \).
4. Compute \(g' \).
5. Use the Chain Rule to compute \(h' \).

Problem 3. Given that \(f(x) = (x^{5/2} - 4x^{1/3} + 365)^{42} \), compute \(f' \).

Problem 4. If \(y = (\cos(x^2))^2 \), compute \(y' \).

Problem 5. Let \(y = \left(\frac{1 - x^2}{1 + x^2}\right)^{10} \) and compute \(y' \) using the Chain Rule first and then the Quotient Rule. Check your answer by rewriting \(y = \frac{(1 - x^2)^{10}}{(1 + x^2)^{10}} \) and computing \(y' \) using the Quotient Rule first and then the Chain Rule.

Problem 6. Find a function \(f \) with derivative \(f'(x) = 5x + 3 \).

Problem 7. Find the equation of the tangent line to the curve \(y = (x + 1/x)^3 \) at the point where \(x = -1 \). Graph the curve and the line.

Problem 8. Assume \(a, b, c \) and \(d \) are real numbers and \(f(w) = a(\cos(wb))^2 + c(\sin(wd))^2 \). Compute \(f' \).

Problem 9. Find the real number \(m \) such that \(y = m \cos(2t) \) satisfies the differential equation \(y'' + 5y = 3 \cos(2t) \).

Problem 10. Given that \(f'(x) = \sqrt{2x + 3} \), \(g(x) = x^2 + 2 \), and \(F(x) = f(g(x)) \), compute \(F' \).

\(^1\)Taken from Calculus I, II, III: A Problem-Based Approach with Early Transcendentals; Mahavier < Allen, Browning, Daniel, & So.