Selected exercises from *Abstract Algebra* by *Dummit and Foote* (3rd edition).

Bryan Félix

Abril 12, 2017

Section 4.1

Exercise 1. Let G act on the set A. Prove that if $a, b \in A$ and $b = ga$ for some $g \in G$, then $G_b = gG_ag^{-1}$. Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{g \in G} gG_ag^{-1}$.

Proof. For the first part we use the usual containment criterion.

i) We show that $g^{-1}G_bg \subseteq G_a$ (equivalently $G_b \subseteq gG_ag^{-1}$).

Let $x \in g^{-1}G_b$, then

\[
x = g^{-1}\tilde{b}g \quad \text{for some } \tilde{b} \in G_b
\]

\[
x \cdot a = g^{-1}\tilde{b}g \cdot a
\]

\[
= g^{-1}\tilde{b}(g \cdot a)
\]

\[
= g^{-1}\tilde{b} \cdot (b)
\]

\[
= g^{-1}(\tilde{b} \cdot b)
\]

\[
= g^{-1} \cdot b
\]

\[
= a
\]

Therefore $G_b \subseteq gG_ag^{-1}$.

ii) Now we show $gG_ag^{-1} \subseteq G_b$.

Let $x \in gG_ag^{-1}$, then

\[
x = g\bar{a}g^{-1} \quad \text{for some } \bar{a} \in G_a
\]

\[
x \cdot b = g\bar{a}g^{-1} \cdot b
\]

\[
= g\bar{a}(g^{-1} \cdot b)
\]

\[
= g\bar{a} \cdot (a)
\]

\[
= g(\bar{a} \cdot a)
\]

\[
= g \cdot a
\]

\[
= b
\]

Hence, $gG_ag^{-1} \subseteq G_b$ as desired.
For the second part, recall that the kernel of the action is given by the intersection of the stabilizers of the elements in A. Since the action is transitive, we have that the orbit of a is equal to the entire set A. Then, by means of the previous part we have

$$\bigcap_{g \in G} gG_ag^{-1} = \bigcap_{g \in G} G_{ga} = \bigcap_{a \in A} G_a$$

as desired.

Exercise 2. Let G be a permutation group on the set A (i.e., $G \leq S_A$), let $\sigma \in G$ and let $a \in A$. Prove that $\sigma G_a \sigma^{-1} = G_{\sigma(a)}$. Deduce that if G acts transitively on A then

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = 1$$

Proof. The first part is trivial using exercise 1. Observe that a and $\sigma(a)$ are elements of A, with the identity

$$\sigma(a) = \sigma \cdot a.$$

For the second part, observe that if the action is transitive, then there is only one orbit. Using Lagrange’s we see that

$$\frac{|G|}{|G_a|} = |O_a| = |G|$$

therefore $|G_a| = 1$ for any $a \in G$. Hence $G_a = 1$ for any $a \in G$. It follows that

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \bigcap_{\sigma \in G} G_{\sigma(a)} = \bigcap_{\sigma \in G} 1 = 1$$

as desired.

Exercise 3. Assume that G is abelian, transitive subgroup of S_A. Show that $\sigma(a) \neq a$ for all $\sigma \in G - 1$ and all $a \in A$. Deduce that $|G| = |A|$.

Proof. If G is abelian we have

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \bigcap_{\sigma \in G} G_a = G_a = 1$$

as desired. For the second part, we use Lagrange’s and we have that

$$[G : G_a] = |O_a| = |G|$$

as desired.

Section 4.2

Exercise 7. Let Q_8 be the quaternion group of order 8

a) Prove that Q_8 is isomorphic to a subgroup of S_8

Proof. This is trivial using Cayley’s Theorem (Corollary 4).
b) Prove that Q_8 is not isomorphic to a subgroup of S_n for any $n \leq 7$.

Proof. It suffices to show that Q_8 is not isomorphic to any subgroup of S_7 (since $S_1 < S_2 < \cdots < S_6 < S_7$).

Let Q_8 act on a set A of order 7. Then we inspect the order of the orbit and stabilizer of an arbitrary element $a \in A$. From Lagrange’s, the order of the stabilizer divides the order of the group Q_8. Therefore the order is either 1, 2, 4 or 8. If the order of the stabilizer equals 1 then, from

$$[G : G_a] = |O_a|$$

we have that the orbit has order 8. This is a clear contradiction since the set A has seven elements. Therefore the order of the stabilizer is either 2, 4 or 8. In any case we can see form the lattice of Q_8 that any such subgroup contains the group $\langle -1, 1 \rangle$. It follows that the kernel of the action

$$\ker(\text{action}) = \bigcap_{a \in A} G_a$$

contains the subgroup $\langle -1, 1 \rangle$. Therefore the action is not faithful, then not injective, and hence, no isomorphism exists.

Exercise 9. Prove that if p is a prime and G is a group of order p^α for some $\alpha \in \mathbb{Z}^+$, then every subgroup of index p is normal in G. Deduce that every group of order p^2 has a normal subgroup of order p.

Proof. We assume that $\alpha \geq 2$ otherwise the group is cyclic and the only subgroup of index p is the identity (which is normal).

We know that groups of order p^α are nilpotent. The following lemma is taken from Isaacs Algebra (2008):

Lemma. The following are equivalent:

i) G is a nilpotent group.

ii) Every maximal proper subgroup of G is normal.

The result then follows for all $\alpha \geq 2$. For groups of order p^2 we have that G is cyclic, then it suffices to show that a subgroup of order p exists. Let x be the generator of G, then $\langle x^2 \rangle$ is a subgroup of G of order p.

Section 4.3

Exercise 6. Assume G is a non-abelian group of order 15. Prove that $Z(G)=1$.

Proof. We inspect the order of $Z(G)$. Since $Z(G)$ is a subgroup of G, it’s order divides 15. Then we have four cases:

i) The order of $Z(G)$ is equal to 1. Then the conclusion is trivial.

ii) The order of $Z(G)$ is equal to 3. Then $[G : Z(G)] = 5$ and therefore $G/Z(G)$ is cyclic. By exercise 36 on section 3.1 we have that G is abelian arriving at a contradiction.
iii) The order of $Z(G)$ is equal to 5.
Like the previous case $G/Z(G)$ is cyclic and then G is abelian.

iv) The order of $Z(G)$ is equal to 15.
Then G is abelian by definition. A clear contradiction.

Exercise 30. If G is a group of odd order, prove for any non identity element $x \in G$ that x and x^{-1} are not conjugate in G.

Proof. We proceed by contradiction and we assume that x^{-1} is a conjugate of x. Then, we look at the action of G with itself by conjugation and inspect the orbit O_x of x.
If the only elements of the orbit are x and x^{-1} then the order of O_x equals two and we have a contradiction (by Lagrange’s theorem) since 2 does not divide $|G|$. Then, there must be $y \in O_x$ such that $y \neq x$.
We make a remark and note that $y \neq 1$ either. Otherwise (by the definition of conjugate elements)
$$x = g1g^{-1}$$
$$x = 1.$$ is a contradiction.
Now take y and observe that
$$x = gyg^{-1}$$
$$x^{-1} = gy^{-1}g^{-1}$$
Therefore y^{-1} is in the same orbit as x^{-1} and hence both y and y^{-1} are in O_x. Again, we observe that the order of O_x is even, and we arrive at a contradiction again.
By the principle of indefinite exhaustion the existence of O_x contradicts the assumption as desired.

Section 4.4

Exercise 7. If H is the unique subgroup of a given order in a group G prove H is characteristic on G.

Proof. Let σ be an element of Aut(G). Recall that σ is an isomorphism $\sigma : G \rightarrow G$. By properties of isomorphisms, group orders are preserved; i.e.
$$|H| = |\sigma(H)|$$
Since H is the unique subgroup of G of order $|H|$, this forces σ to map H to itself.
Remark. It is not necessary that $\sigma(h) = h$ for $h \in H$.

Exercise 8. Let G be a group with subgroups H and K with $H \leq K$.

a) Prove that if H is characteristic in K and K is normal in G then H is normal in G.

Proof. Let G act on K by conjugation and let σ_g be the associated permutation of a fixed element in G acting on K. Observe that since K is normal $\sigma_g(K) = K$ for all $g \in G$. Furthermore σ_g is an isomorphism of K, therefore $\sigma_g \in \text{Aut}(K)$. Then, since H is characteristic in K we have that $\sigma(H) = H$ for all $g \in G$. Equivalently $gHg^{-1} = H$ as desired.

b) Prove that if H is characteristic in K and K is characteristic in G then H is characteristic in G.

Proof. Let σ be an element in $\text{Aut}(G)$. Since K is characteristic in G, $\sigma(K) = K$. Furthermore σ restricted to K is an isomorphism of K, therefore $\sigma|_K \in \text{Aut}(K)$. It is easy to see that

$$\sigma|_K(H) = H$$

and therefore $\sigma(H) = H$ as desired.

Exercise 9. If r, s are the usual generators for the dihedral group D_{2n}, use the preceding two exercises to deduce that every subgroup of $\langle r \rangle$ is normal in D_{2n}.

Proof. We will show that $\langle r \rangle$ is normal in D_{2n} and then show that any subgroup of $\langle r \rangle$ is characteristic.

For the first part note that the only generator outside $\langle r \rangle$ is s. Then it suffices to show that $\langle r \rangle = \langle srs^{-1} \rangle$. Observe that

$$\langle srs^{-1} \rangle = \langle r^{-1} \rangle$$

$$= \langle r \rangle$$

as desired. Therefore $\langle r \rangle$ is normal in D_{2n}.

For the second part, recall that a group is cyclic if and only if no two (distinct) subgroups have the same order. Therefore, by problem 7, the subgroups of $\langle r \rangle$ are characteristic. The result then follows.

Exercise 16. Prove that $(\mathbb{Z}/24\mathbb{Z})^\times$ is an elementary abelian group of order 8.

Proof. It suffices to show that for every number $n < 24$ relative prime to 24, $n^2 \equiv 1 \pmod{24}$. Observe that

$$1^2 = 1 \equiv 1 \pmod{24}$$
$$5^2 = 25 \equiv 1 \pmod{24}$$
$$7^2 = 49 \equiv 1 \pmod{24}$$
$$11^2 = 121 \equiv 1 \pmod{24}$$
$$13^2 = 169 \equiv 1 \pmod{24}$$
$$17^2 = 289 \equiv 1 \pmod{24}$$
$$19^2 = 361 \equiv 1 \pmod{24}$$
$$23^2 = 529 \equiv 1 \pmod{24}$$

Hence, $(\mathbb{Z}/24\mathbb{Z})^\times$ is an elementary abelian group of order 8.
Section 4.5

Exercise 13. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing its order.

Proof. Using Sylow’s theorems we see that

\[n_2 = 1 \text{ or } 7 \]

and

\[n_7 = 1 \text{ or } 8. \]

We proceed by contradiction and we assume that neither of the Sylow subgroups is normal. Therefore we necessarily have \(n_2 = 7 \) and \(n_7 = 8 \). Since the Sylow 7-subgroups only intersect at the identity we have \(8(7−1) = 48 \) non-identity elements of order 7 in \(G \). Observe that none of these elements can belong to the Sylow 2-subgroups by Lagrange’s. Then we are left with 8 elements belonging to the 8 distinct Sylow 2-subgroups. This is impossible and we have our contradiction.

Exercise 16. Let \(|G| = pqr\), where \(p, q,\) and \(r\) are primes with \(p < q < r\). Prove that \(G\) has a normal Sylow subgroup for either \(p, q,\) or \(r\).

Proof. We inspect the values of \(n_r\) and \(n_q\). By the Sylow theorems we must have that \(n_r\) satisfies:

\[n_r \equiv 1 \mod r \]

and

\[n_r \mid pq. \]

The latter restricts the options to \(n_r\) being either 1, \(p, q\) or \(pq\). Note that if \(n_r = 1\) then the Sylow subgroup is normal and we are done. Otherwise note that the assumption \(p > q > r\), forces \(n_r\) to be equal to \(pq\) (otherwise the congruence is not satisfied).

Likewise we inspect the possible values of \(n_q\) and conclude that \(n_q\) is either \(r\) or \(pr\).

Now, we make the standard count element. The \(pq\) Sylow r-subgroups contribute with \(pq(r−1)\) elements while the Sylow q-subgroups contribute with at least \(r(q−1)\) elements. In total we have

\[
pq(r−1) + r(q−1) = pq(r−1) + p(q−1) = pqr - pq + pq - p = pqr - p
\]

Recall that the order of \(G\) is \(pqr\). Therefore we only have \(p\) elements to distribute to the renaming Sylow subgroups. This forces the uniqueness of the Sylow p-subgroup, making is a normal subgroup of \(G\) as desired.

Exercise 30. How many elements of order 7 must there be in a simple group of order 168?

Solution. Note that 168 = 2³ · 3 · 7. If we inspect the number of Sylow 7-subgroups \(n_7\) we see that

\[n_7 \equiv 1 \mod 7 \]

and

\[n_7 \mid 24 \]
The latter restricts \(n_7 \) to either 1, 2, 3, 4, 6, 8, 12 or 24. Together with the congruence and the fact that the group is simple we have that \(n_7 = 8 \). Since these Slow 7-subgroups are of prime order, they all intersect only at the identity, therefore we have

\[
8(7 - 1) = 48
\]

elements of order 7 in the group. \(\square \)

Exercise 33. Let \(P \) be a normal Sylow \(p \)-subgroup of \(G \) and let \(H \) be any subgroup of \(G \). Prove that \(P \cap H \) is the unique Sylow \(p \)-subgroup of \(H \).

Proof. Since \(P \) is normal in \(G \), \(H \) is a subgroup of \(N(P) \) and we may use the second isomorphism theorem. Then, \(H \cap P \) is normal in \(H \) and by Corollary 20 \(H \cap P \) is the unique Sylow subgroup of \(H \). \(\square \)

Exercise 34. Let \(P \in \text{Syl}_p(G) \) and assume \(N \trianglelefteq G \). Use the conjugacy part of Sylow’s Theorem to prove that \(P \cap N \) is a Sylow \(p \)-subgroup of \(N \). Deduce that \(PN/N \) is a Sylow \(p \)-subgroup of \(G/N \).

Proof. Take any Sylow \(p \)-subgroup \(H \) of \(N \) and observe that \(H \) is a \(p \)-subgroup in \(G \), therefore there exist \(g \in G \) such that

\[
H \leq gPg^{-1}.
\]

Furthermore \(H \) is also a subgroup of \(gNg^{-1} \) (by the normality of \(N \)). Then

\[
H \leq (gPg^{-1}) \cap (gNg^{-1})
\]

and

\[
gHg^{-1} \leq P \cap N.
\]

Note that both \(gHg^{-1} \) and \(P \cap N \) are \(p \)-subgroups in \(G \). Since \(|gHg^{-1}| = |H| \) and \(H \) is a Sylow \(p \)-subgroup of \(N \) it follows that \(P \cap N \) has \(p \)-power order at least as large as \(H \). Therefore \(P \cap N \) is a Sylow \(p \)-subgroup of \(N \).

For the second part we use the second isomorphism theorem. Since \(N \) is normal \(P \leq N(N) \) and therefore \(PN \) is a subgroup of \(G \). We only need to show that \(p \) does not divide the order of the index

\[
[G/N : PN/N].
\]

By the second isomorphism theorem \(PN/N \cong P/P \cap N \), then

\[
[G/N : PN/N] = [G/N : P/P \cap N] = \frac{|G| |P \cap N|}{|P||N|}.
\]

By assumption \((P \in \text{Syl}_p(G)) \) \(p \) does not divide \(\frac{|G|}{|P|} \) and by the first part of the problem \((P \cap N \in \text{Syl}_p(N)) \) \(p \) does not divide \(\frac{P \cap N}{N} \). Thus, \(p \) does not divide \([G/N : PN/N] \) as desired. \(\square \)