Vitamin C, and so on. 55 grams of protein, 100% of our RDA of calories, 22 grams of protein, 100% of our RDA of 2000 because we need to meet certain requirements. We also have constraints, minimizing the cost function. We're trying to minimize the cost function.

This is an optimization problem because we are trying to minimize the cost function. We are trying to minimize the cost function.

The problem: how can you reach your recommended daily nutritional allowances at McDonald's for the least amount of money?
important constraint: we want integer solutions.
The computer has given us insight. We left out an

Total Cost: $14.85 (Total Calories: 3965)

- 3.42 Milk
- 6.15 Small Fries
- 4.39 Quarter Pounders with Cheese

The computer gives us the following solution.
Total Cost: $15.05. (Total Calories: 3970)

- 1 Pilet-O-Fish
- 4 Milkies
- 5 Small Pizzas
- 4 Quarter Pounders with Cheese

The new, more practical solution looks like this.
Total Cost: $5.36 (Total Calories: 2018)

- 0.41 Orange Juices
- 1.78 Milks
- 2.27 Cheerios
- 0.04 Chunky Chicken Salads
- 16.2 Honey
- 4.12 Sweet 'n Sour Sauces
- 2.06 Cheeseburgers

If we given the computer all 63 items on the McDonald's menu, we get the following solution.
We can also add other constraints, such as "one drink per meal." No more than two of the same item.

3. Variety would be good. We should limit ourselves to saucy (without the accompanying meal).

2. You can't get certain items (such as sweet'n sour sauce) without the accompanying meal.

1. We should ask for integer solutions.

The computer has given us the insight to add these new constraints.
<table>
<thead>
<tr>
<th>Meal</th>
<th>2 Hamburger</th>
<th>Chocolate Shake</th>
<th>HIC Orange (large)</th>
<th>Orange Juice</th>
<th>Cinnamon Raisin Danish</th>
<th>Side Salad</th>
<th>Cheeseburger</th>
<th>Cheetos</th>
<th>English Muffin</th>
<th>The "Final Solution" (organized into three meals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
</tr>
</tbody>
</table>
problem, but you still need to do the thinking. They are only tools. They can give you insights into a that calculators and computers can be valuable tools, but remember during the rest of your studies and career.

Conclusion