Solutions to Exam 1

#1: In order to find the Cartesian equation for a plane we need to know a vector $\vec{n} = (A, B, C)$ which is perpendicular (or *normal*) to the plane, and a point (x_0, y_0, z_0) which is on the plane.

We can get a normal vector by taking the cross product of two vectors in the plane (technically, *parallel* to the plane). For example,

$$\vec{PQ} = (1, 1, 1)$$

 $\vec{PR} = (2, 0, 3)$

You can check the following calculation on your own:

$$\vec{n} = \vec{PQ} \times \vec{PR} = (3, -1, -2)$$

Using the point P(-1,2,0), the equation $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$ for the plane is:

$$3(x+1) - 1(y-2) - 2(z-0) = 0$$

You could also multiply this out to get an equation of the form Ax + By + Cz = D.

#2: The graph of the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is the ellipsoid with x-intercepts at $(\pm a, 0, 0)$, y-intercepts at $(0, \pm b, 0)$, and z-intercepts at $(0, 0, \pm c)$. Placing the north and south poles on the z-axis gives us

$$\frac{x^2}{3822^2} + \frac{y^2}{3822^2} + \frac{z^2}{3810^2} = 1$$

#3: $T: \mathbb{R}^3 \to \mathbb{R}^4$, so the matrix representing it should be a 4×3 matrix. It is as follows:

$$\begin{bmatrix} 0 & 2 & 0 \\ -3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

The composition $T \circ S$ does not exist, because you would do S first, and get 4 outputs, but T requires 3 inputs.

The other composition, $S \circ T$, does exist. We can find it using matrices; multiply the matrix representing S (which you first have to find) and the matrix representing T:

$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	0	2	0		0	-1	1]
0 1 0 0	-3	1	0		-3		
0 0 1 0	1	1	1	=	1	1	1
					0	2	0

This is the matrix which represents the linear transformation

$$S(T(x, y, z)) = (z - y, -3x + y, x + y + z, 2y)$$

You could also do this without matrices by noting that S flip-flops its first and last inputs, and leaves everything else the same. Note that our final answer is exactly that, if the inputs happen to be the outputs of T (which is the case when computing $S \circ T$).

#4: Any points in the intersection must have x and y values on the circle of radius $\sqrt{3}$ described by the equation $x^2 + y^2 = 3$. The standard paramtrization for this circle is $(\sqrt{3}\cos\theta, \sqrt{3}\sin\theta)$, where $0 \le \theta \le 2\pi$. We also know that any points on the intersection have z-values such that z = 4x - 5y + 12. Hence our parametrization is:

$$f(t) = (\sqrt{3}\cos\theta, \sqrt{3}\sin\theta, 4(\sqrt{3}\cos\theta) - 5(\sqrt{3}\sin\theta) + 12)$$

where $0 \le \theta \le 2\pi$.

#5: First of all, note that 0 < 2, so at the point (0,2) we have f(x,y) = 1 - |y|. By definition,

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

So at the point (0,2) we have:

$$\begin{split} \frac{\partial f}{\partial x}(0,2) &= \lim_{h \to 0} \frac{f(0+h,2) - f(0,2)}{h} \\ &= \lim_{h \to 0} \frac{(1-|h|) - (1-|0|)}{h} \\ &= \lim_{h \to 0} \frac{-|h|}{h} \end{split}$$

As you might remember from single variable calculus, this limit does not exist. If you let $h \to 0^+$ (that is, take the *right hand* limit), it's equal to -1. If $h \to 0^-$ (the *left hand* limit), it's just 1. Since these values do not agree, the limit (and hence the partial derivative) does not exist.

#6: We know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$. You can check the following calculations:

$ \vec{a} = \sqrt{1^2 + 0^2 + 2^2 + 0^2 + 3^2} = \sqrt{14}$
$ \vec{b} = \sqrt{2^2 + 0^2 + 1^2 + 1^2 + 1^2} = \sqrt{7}$
$\vec{a} \cdot \vec{b} = 1 \cdot 2 + 0 \cdot 0 + 2 \cdot 1 + 0 \cdot 1 + 3 \cdot 1 = 7$
$\cos\theta = \frac{7}{\sqrt{14}\sqrt{7}} = \frac{1}{\sqrt{2}}$
$\sqrt{14}\sqrt{7}$ $\sqrt{2}$

$$\theta = \frac{\pi}{4}$$
 or 45 degrees

October 13, 2003

Duane Nykamp <nykamp@math.umn.edu> Jonathan Rogness <rogness@math.umn.edu>