\#1: In order to find the Cartesian equation for a plane we need to know a vector $\vec{n}=$ (A, B, C) which is perpendicular (or normal) to the plane, and a point $\left(x_{0}, y_{0}, z_{0}\right)$ which is on the plane.

We can get a normal vector by taking the cross product of two vectors in the plane (technically, parallel to the plane). For example,

$$
\begin{aligned}
\overrightarrow{P Q} & =(1,1,1) \\
\overrightarrow{P R} & =(2,0,3)
\end{aligned}
$$

You can check the following calculation on your own:

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=(3,-1,-2)
$$

Using the point $P(-1,2,0)$, the equation $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$ for the plane is:

$$
3(x+1)-1(y-2)-2(z-0)=0
$$

You could also multiply this out to get an equation of the form $A x+B y+C z=D$.
\#2: The graph of the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is the ellipsoid with x-intercepts at $(\pm a, 0,0), y$-intercepts at $(0, \pm b, 0)$, and z-intercepts at $(0,0, \pm c)$. Placing the north and south poles on the z-axis gives us

$$
\frac{x^{2}}{3822^{2}}+\frac{y^{2}}{3822^{2}}+\frac{z^{2}}{3810^{2}}=1
$$

$\# 3: T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, so the matrix representing it should be a 4×3 matrix. It is as follows:

$$
\left[\begin{array}{ccc}
0 & 2 & 0 \\
-3 & 1 & 0 \\
1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

The composition $T \circ S$ does not exist, because you would do S first, and get 4 outputs, but T requires 3 inputs.

The other composition, $S \circ T$, does exist. We can find it using matrices; multiply the matrix representing S (which you first have to find) and the matrix representing T:

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & 0 \\
-3 & 1 & 0 \\
1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 2 & 0
\end{array}\right]
$$

This is the matrix which represents the linear transformation

$$
S(T(x, y, z))=(z-y,-3 x+y, x+y+z, 2 y)
$$

You could also do this without matrices by noting that S flip-flops its first and last inputs, and leaves everything else the same. Note that our final answer is exactly that, if the inputs happen to be the outputs of T (which is the case when computing $S \circ T$).
\#4: Any points in the intersection must have x and y values on the circle of radius $\sqrt{3}$ described by the equation $x^{2}+y^{2}=3$. The standard paramtrization for this circle is $(\sqrt{3} \cos \theta, \sqrt{3} \sin \theta)$, where $0 \leq \theta \leq 2 \pi$. We also know that any points on the intersection have z-values such that $z=4 x-5 y+12$. Hence our parametrization is:

$$
f(t)=(\sqrt{3} \cos \theta, \sqrt{3} \sin \theta, 4(\sqrt{3} \cos \theta)-5(\sqrt{3} \sin \theta)+12)
$$

where $0 \leq \theta \leq 2 \pi$.
\#5: First of all, note that $0<2$, so at the point $(0,2)$ we have $f(x, y)=1-|y|$. By definition,

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

So at the point $(0,2)$ we have:

$$
\begin{aligned}
\frac{\partial f}{\partial x}(0,2) & =\lim _{h \rightarrow 0} \frac{f(0+h, 2)-f(0,2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1-|h|)-(1-|0|)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-|h|}{h}
\end{aligned}
$$

As you might remember from single variable calculus, this limit does not exist. If you let $h \rightarrow 0^{+}$(that is, take the right hand limit), it's equal to -1 . If $h \rightarrow 0^{-}$(the left hand limit), it's just 1 . Since these values do not agree, the limit (and hence the partial derivative) does not exist.
\#6: We know that $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$. You can check the following calculations:

$$
\begin{aligned}
|\vec{a}| & =\sqrt{1^{2}+0^{2}+2^{2}+0^{2}+3^{2}}=\sqrt{14} \\
|\vec{b}| & =\sqrt{2^{2}+0^{2}+1^{2}+1^{2}+1^{2}}=\sqrt{7} \\
\vec{a} \cdot \vec{b} & =1 \cdot 2+0 \cdot 0+2 \cdot 1+0 \cdot 1+3 \cdot 1=7 \\
\cos \theta & =\frac{7}{\sqrt{14} \sqrt{7}}=\frac{1}{\sqrt{2}} \\
\theta & =\frac{\pi}{4} \text { or } 45 \text { degrees }
\end{aligned}
$$

