Expected values

The expected value E(X) or EX of a random
variable X on a probability space {2 is a kind

of weighted average of the values of X, with the
weights being the probabilities of the different
inputs/outputs. The precise definition is

expected value of X = F(X)
=) Pw) X(w)
wed

We can group the inputs according to the
output value produced, so this is also equal to

E(X) = > P(X=zx) -z

values © of X

where (again) the notation P(X = x) means the
probability that X takes value z:

P X=2)=P{we: X(w) =1z})



About notation

Yes, the notation and terminology for random
variables is different from, and in conflict with,
the notation used for functions and their values
in calculus and differential equations.

First, and most importatly, yes, random
variables are actually functions.

Yes, the random variable’s name is often X,
unlike the f or g in calculus.

Yes, usually the input to a function is called x,
not the output, as in X(w) = x.



Examples of expected values

With X being the random variable counting Hs
in a single flip of a fair coin,

E(X) = > P(X=z)x

values © of X

=P(X=0)-0+P(X=1)-1
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Note that we will never actually get 1/2 head in
a flip of a fair coin.

But, as with many averages, the average or
weighted average of integer values may be a
non-integer.

That’s ok.



With X being the random variable counting Hs
in 3 flips of a fair coin,

E(X) = > PX=2x)x
values z of X
=P(X=0)-0+P(X=1)-1
+P(X=2)-2+P(X=3)3

(e (e
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This may be an intuitively appealing answer, if
we imagine that we get an average of 1/2 head
per flip in 3 flips.

But notice that the definition hands us an
expression whose value is not obviously the
answer what we expect, though it turns out to
be so.



Sums and products of random variables

The sum random variable X + Y made
from two random variables X,Y defined on the
same probability space €2 is defined, reasonably
enough, to be the function whose values are
the sum of the values of X and Y. That is, for
w € €

(X +Y)(w) =X(w)+Y(w)

Similarly, the product random variable X - Y
1S

(X - Y)(w) = X(w) - Y(w)



The basic theorem on expected values

Our intuition about certain examples (like
flipping a coin several times) is justified by the
basic theorem about expected values:

Theorem: Let X;,...,X,, be random variables
on a common probability space ). Then

E(Xi4...+X,) = E(X1) + ...+ E(X,)

That is, the expected-value function F is
additive (or linear).

Most functions do not have the additive
property, though naive presumption of
additivity (or linearity) is common. For
example, despite many errors by novices,
generally

sin(a + b) # sina + sinb

Va+b#Va+ Vb
(a + b)% # a® + b?



For example, to compute the expected number
of Hs in 10 flips of a fair coin, let X be the
random variable on the probability space of all
possible outcomes of 10 flips. The definition of
expected value of X is what we want, namely

expected no. Hs in 10 flips = F(X)

:iP(X:k:)-k:iO: (1k0)-2_10-k

k=0 k=0
[1-04+10-1445-2+120-3

+210-44252-54+210-6+120-7
+45-8+10-9+1-10] /1024
= (amazingly)5b

It is completely not obvious that this big
computation will yield the intuitively suggested
answer

1
10 - 5 = 5 expected Hs in 10 flips



Invocation of the Theorem allows us to
legitimize our intuition here. Define random
variables Xl, ce 7X10 by

X,; = no. Hs on the i*" flip of 10

Note that these are all defined on the same
probability space. Then

X=X14+...+ Xy
By the theorem,
E(X)=E(X1)+...+ E(X10)

We evaluate each F(X;) via the definition

E(X;)= ) P(Xi=k)-k

valuesk

=PX;=0)-0+P(X;=1)-1



Since the flips are independent and the coin
is fair, for any index ¢ the probability that H
appears on the i*® flip is 1/2, so this is

1

Then
E(X)=E(X1)+...+ E(X10)

—101
- 2

= _—+... + =5

"~

10

1 1
2 2

It bears repeating that this is not the definition
of expected value, and that our intuition is not
obviously correct. Happily, it s intuitively
correct and in the end our intuition (in this
case) is vindicated by the Theorem.

Beware, though, that not all functions are
additive or linear.



Evaluation by generating functions

But, even though it turns out that we do not
need it in the above example, we might also
want to be able to evaluate expressions such

B

k=0

directly. This is possible, and the methodology
has many applications.

Recall the Binomial Theorem

(z+y)" = ER: (Z) kyn*

k=0

Partial differentiation with respect to = gives

_ " [n I
n(x + y)" IZZ(k)k:ck Lyn—k

k=0
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Anticipating that we’lllet z = pand y =1 —p
eventually, we see we’re missing a factor of x on
the right in that equality

_ " [n I
n(z +y)" IZZ(k)kxk Ly

so multiply through by x:

nz(z+y)" ' = Z (Z) ka® y "

k=0

Letting x = p and y = 1 — p gives

p-n= zn: (Z)p’“(l —p)" "k

k=0

For p = 1/2 we get the same conclusion as
earlier via the Theorem, but use of the Theorem
is much better because it is both simpler and
more intuitive.
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Example: How long we should expect to wait
in flipping a fair coin until we get an H?

That is, let X be the random variable which
counts the number of flips up to and including
the first flip which gives a H. Then

= i P(X =
k=0

= P(H) -1+ P(TH) - 2+ P(TTH) - 3

+ P(TTTH) - 4 + P(TTTTH) -5+ ...

(H) -1+ P(T)P(H) -2+ P(T)>P(H) - 3
P(T)*P(H) -4 + P(T)*P(H) -5+ ...

by independence of flips. Without even thinking
about the fairness, let P(H) = p and P(T) = g,
where p 4+ g = 1.
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Then we’re wanting to evaluate

o0
> pad Tk
k=0

The infinite series we know how to evaluate is
the geometric series

> 1
k——

for |¢| < 1. Differentiating both sides of this
with respect to g gives

o0 1
k—1

Z ¢ k= 2

k=0 (1 o Q)

This is missing a factor of p, so multiply both
sides by pq and using p+q =1

S k—1 p p
P (1—-4q)
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In the identity

> B 1
k=0 p

let p=q = % to obtain

expected flips of fair coin to get a H

o0 k—1

1 /1
Zz 2 1/2
k=0

This might suggest that we should expect to get
a H on the second flip, so that we get a T on the
first flip? But the same discussion would say
that the expected number of flips to get a T is
also 2.

No, it’s just that we should not expect to get the
expected value, since it’s just an average.
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Monty Hall Paradox [sic]

In case elementary probability seems too easy,
here is a popular example that is less trivial.

In a game show Let’s Make a Deal in which
players were faced with 3 doors, behind one of
which was a prize. The player chose a door, but
the door was not opened. The host Monty Hall
(who knew where the prize was) opened another
door than the one guessed by the player, but
not the one with the prize. The player was
offered the chance to change their guess. Should
the player change their quess?

Thus, the player was faced with one open door
with no prize, and two closed doors, one of
which was their original guess, and behind one
of which is the prize.
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The contestant should always change their
guess.

This may be counter-intuitive.

One way to explain this in colloquial terms is to
say that the probability of originally guessing
the correct door is 1/3, and that does not
change. Thus, the probability is

that you’re wrong, and should change your
guess.

Among many incorrect arguments there is

the one that says that, not knowing what

else is going on, since there are two doors,

the probability is 1/2. This approach, in
which ignorance of facts is interpreted as equal
probability, was already disdained by Laplace
300 years ago, and we should not use it now.

16



Conditional probability

The conditional probability that an event
A will occur given that an event B occurs is
defined to be

P(AN B)

P(AIB) = —5

It is important to note that this is a definition,
which turns out to have both practical and
mathematical virtues. For one thing, we do not
need to try to intuit the meaning of probability
that A will occur given that B occurs.

Example: The conditional probability that
at a fair coin comes up heads in at least 3 of 6
flips, given that the first two flips are tails, is

P(at least 3 H’s in 6|first two T’s)

~ P(first two T’s and at least 3 H’s)
P(first two T’s)
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Birthday paradox [sic]

It may seem strange that in a set of at least 23
people the probability is > 1/2 that two have the
same birthday.

Not 365/2, but more like v/365.

For n things chosen at random with equal
probabilities (and independently) from N things
(with replacement), for

1
n>\/721n2-\/ﬁwl—g-\/ﬁ

the probability that two things are the same is
1

> 5.
2
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Computation for birthday paradox

We compute the probability that no two
outcomes are the same, and subtract this result
from 1 to obtain the desired result.

After two trials, there is 1/N chance that the
second outcome was equal to the first one, so
the probability is 1 — that the outcomes of
two trials will be dlfferent

After 3 trials, given that the first two outcomes
are different, the conditional probability is 2/N
that the third trial would give an outcome equal
to one of the first two. Thus, given that the
first two outcomes are different, the conditional
probability that the third will differ from both

is 1 — <. Since the probablhty that the first
two Were different was 1 — &, the formula above
gives
P(first 3 different) = (1 — —) (1 — =)
IS ifferent) = (1 — —) (1 — —
N N

After 4 trials, given that the first two outcomes
are different, the conditional probability is 3/N
that the third trial would give an outcome equal
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to one of the first two. Thus, given that the
first two outcomes are different, the conditional
probability that the third will differ from all of
the first 3 is 1 — % Using the previous step, and
the formula above,

P(first 4 different) = (1~ =) (1~ ) (1 - )

Continuing, we get

P(n trials all different)

1 2 3 n—1
=(1- ) (-2 1- =) (1= 22
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The logarithm of the probability that they’re all
different is

n—1

ln(l—i)—l—ln(l—z)-l—---—l—ln(l— N )

N N

The first-order Taylor expansion for In(1 —z) for
lz| < 1

In(l—2)= —(z4+ — + >+ 2 4.

In particular for 0 < z < 1

In(l —z) < —=x

SO
1 2 n—1
(1+2 +n—1)
- "N N N
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Recall
1
14+243+44 -+ (k=1)+k=k(k+1)

Then

(n—1)n
N

DN =

In (P(n trials all different)) <

As n gets larger and larger, the expression
(n — 1)n is for practical purposes n?. Thus, we
have an approrimate formula

2

n
In (P(n trials all different)) < ——
n (P(n trials all different)) < i

or
P(n trials all different) < e~ /2N

P(2 of n trials the same) > 1 — o~ /2N
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The probability that some two will be the same
is therefore bigger than or equal 1/2 when the
probability that no two are the same is less
than 1/2. Thus, for given N we solve to find
the smallest n so that

n? 1

_ " <ln =
oN S5

which gives the formula
1
n2v2-1n2-m~1—(7)-\/ﬁ

for the size of n to assure that the probability is
bigger than 1/2 that two choices are the same.
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