Decoding from a noisy channel

One (eventually discarded) try at decoding messages sent through a noisy channel is the following. Let x_1, \ldots, x_m be the source words, and suppose y is received. We might decode y as x_{i_0} where x_{i_0} is the source word such that

$$P(x_{i_0} \text{ sent} | y \text{ received}) \geq P(x_i \text{ sent} | y \text{ received})$$

That is, given that y was received, the (conditional) probability that x_{i_0} was sent is the greatest among the x_is. This is the ideal observer or minimum-error rule.

Remark: This rule seems reasonable but has a fatal flaw: the receiver must know the probabilities that x_i is sent.

Therefore, do not try to use this rule.
A better rule is the **maximum-likelihood** (‘ML’) decoding rule, which decodes a received word y into x_i to maximize

$$P(y \text{ received} | x_i \text{ sent})$$

We do not need to know the probabilities that words x_i are sent.

For a binary symmetric channel maximum-likelihood decoding can be described in terms of the **Hamming distance** between strings of 0s and 1s (after proving a little result).

The **Hamming distance** $d(x, y)$ between two binary vectors $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$ of the same length is

$$d(x, y) = \text{number of indices } i \text{ so that } x_i \neq y_i$$

The **Hamming weight** of a binary vector is the number of entries that are 1.

Minimum-distance decoding decodes a received word as the codeword x_i closest (in Hamming distance) to y.

2
Proposition: The Hamming distance \(d(,) \) among binary strings of a fixed length behaves like a ‘real’ distance function in that it has properties

\(d(x, x) = 0 \) for any string \(x \), and \(d(x, y) = 0 \) implies \(x = y \).

- (Symmetry) \(d(x, y) = d(y, x) \)
- (Triangle inequality) \(d(x, z) \leq d(x, y) + d(y, z) \)

Proof: The first two assertions are easy. For the third, look at the \(i^{th} \) bit in all three strings. If \(x \) and \(z \) differ at the \(i^{th} \) bit, then either \(x \) and \(y \) differ at the \(i^{th} \) bit, or \(z \) and \(y \) differ at the \(i^{th} \) bit. Thus, adding up these differences over locations \(i^{th} \), we have an analogous inequality for all \(i \), so the sums satisfy the same inequality.

///
At first glance maximum-likelihood and minimum-distance may not be the same, but they turn out to be identical:

Theorem: For binary symmetric channel with bit error probability \(p < \frac{1}{2} \), minimum-distance decoding is equivalent to maximum-likelihood.

Proof: Let \(x \) be a possible decoding of a received \(y \). The probability that \(x \) became \(y \) is

\[
p^d(x,y)(1 - p)^{n-d(x,y)}
\]

since \(d(x, y) \) bits flip. Since \(p < \frac{1}{2} \), \(p/(1-p) < 1 \), so if \(d(z, y) > d(x, y) \)

\[
p^d(x,y)(1 - p)^{n-d(x,y)} \geq p^d(x,y)(1 - p)^{n-d(x,y)} \cdot \left(\frac{p}{1-p} \right)^{d(z,y)-d(x,y)} = p^{d(z,y)}(1 - p)^{n-d(z,y)}
\]

So the probability that \(x \) became \(y \) is greatest when \(x \) is closest to the received word \(y \). ///

So always use minimum-distance decoding.
Example: Given codewords \(a = 1001 \), \(b = 0111 \), \(c = 0001 \), and received word \(y = 1111 \), how should we decode \(y \)?

Part of the question is answered by recalling that we use *minimum-distance* (=maximum-likelihood) decoding. That is, use Hamming distance (the number of bits differing in two words) \(d(,\,) \) and decode the received word \(y \) as the codeword closest to it in Hamming distance.

Compute the Hamming distances by comparing respective bits, adding 1 for each differing bit:

\[
\begin{align*}
d(a, y) &= d(1001, 1111) = 0 + 1 + 1 + 0 = 2 \\
d(b, y) &= d(0111, 1111) = 1 + 0 + 0 + 0 = 1 \\
d(c, y) &= d(0001, 1111) = 1 + 1 + 1 + 0 = 3
\end{align*}
\]

Thus, the received word \(y \) is closest to codeword \(c \) (in Hamming distance), so **decode** \(y = 1111 \) as \(b = 0111 \).
Example: A three-word message is encoded by \(a = 1000011, b = 0100101, c = 0010110, \)
\(d = 0001111, e = 1100110, \) and \(f = 1010101, \)
\(g = 1001100. \) The message is sent across a noisy channel, and you receive
’111011010001101001101’. What was the most likely original message?

The message is considered as three 7-bit words in a row, each of which is a mangled form of
one a codewords. We decode each mangled 7-bit received word by minimum-distance decoding,
using Hamming distance (which counts the differing bits), finding the codeword which
differs from it by the least number of bits.

Shortcuts: By a one-time pre-computation, the codewords have Hamming distances as little
as 3 from each other. Hoping for unambiguous decoding, only consider codewords of Hamming
distance 0 or 1 from the received words. If there is none, then decoding fails. And if we find one
codeword at distance \(\leq 1, \) we decode as that codeword and stop.
The following results illustrate the utility of the intuition attached to the idea of distance:

Theorem: In general, when codewords have distances at least 3 from each other, for a given received word y there cannot be two codewords x, z both at distance ≤ 1 from y.

Proof: Suppose $d(x, y) = d(y, z) = 1$ but $d(x, z) \geq 3$. Then by the triangle inequality

$$3 \leq d(x, z) \leq d(x, y) + d(y, z) = 1 + 1$$

contradiction.

///

Similarly:

Theorem: More generally, when codewords have distances at least $2k + 1$ from each other, for a given received word y there cannot be two codewords x, z both at distance $\leq k$ from y.

Proof: Suppose $d(x, y) = d(y, z) \leq k$ but $d(x, z) \geq 2k + 1$. Then by the triangle inequality

$$2k + 1 \leq d(x, z) \leq d(x, y) + d(y, z) = k + k$$

contradiction.

///
In the example, instead of computing the Hamming distance from a received word to all codewords, stop as soon as distance \(\leq 1 \).

Further: gradually compare bits from left to right and reject a codeword as soon as it differs by 2 or more bits from the received word.

And, again, as soon as a codeword is at distance \(\leq 1 \) from the received word, we decode as that codeword and do not continue computing distances.

The general analogues of these two shortcuts apply when the minimum distance between codewords is \(2k + 1 \):

When a codeword is within \(k \) of the received word, decode as that word and stop. This cuts in half the expected number of comparisons.

Further, compare the received word and codewords bit-by-bit, and as soon as the number of differing bits exceeds \(k \), reject that codeword without further comparison. This is another significant speedup.
The first received word ’1110110’ (the first 7 bits of the whole string) differs from $a = 1000011$ at the 2nd and 3rd bits, so reject a. It differs from $b = 0100101$ at 1st and 3rd, so drop b. It differs from $c = 0010110$ at 1st and 2nd, so drop c. It differs from $d = 0001111$ at 1st and 2nd, so drop d. It differs only at 3rd, from $e = 1100110$ so has Hamming distance 1 from e. We decode 1110110 as $e = 1100110$ and **stop**, not even measuring the distance of 1110110 to $f = 1010101$ and $g = 1001100$.

Similar computations apply to the second and third batches of 7 bits from the received message.

Summarizing,

1110110 closest (only 2nd differs) 1100110 = e
1000110 closest (only 1st differs) 1100110 = e
1001101 closest (only 6th differs) 1001100 = g

Thus, the decoding of the message ’111011010001101001101’ is ’eeg’.
Channel capacity

Part of Shannon’s theorem about error-correction is a precise meaning for channel capacity (to carry information).

Let C be a memoryless discrete channel with input alphabet Σ_{in} and output alphabet Σ_{out} and for $x_i \in \Sigma_{in}$ and $y_j \in \Sigma_{out}$ transition probabilities

$$p_{ij} = P(y_j \text{ received } | x_i \text{ sent})$$

Let source X emit elements of Σ_{in} and

$$p_i = P(X \text{ emits } x_i)$$

The output of the channel C with X connected to its input is a memoryless source Y emitting Σ_{out} with probabilities

$$p'_j = \sum_{i=1}^{m} P(y_j \text{ received } | x_i \text{ sent })$$

$$P(X \text{ sent } x_i) = \sum_{i=1}^{m} p_{ij} p_i$$
The **information about X given Y** is the decrease in entropy

$$I(X|Y) = H(X) - H(X|Y)$$

$$= H(X) + H(Y) - H(X,Y)$$

Remark: The expression for $I(X|Y)$ is symmetrical

$$I(X|Y) = I(Y|X)$$

so the amount of information about X imparted by Y is equal to the amount of information about Y imparted by X.

The **channel capacity** is

$$\text{capacity (C)} = \max_X I(X|Y)$$

with max over all probability distributions for sources emitting the given alphabet accepted as inputs by the channel.

Remark: This is not a *computationally useful* definition.
Remark: Capacity is a continuous function on the closed and bounded set of probabilities \(p_1, \ldots, p_m \), so the maximum exists. From calculus the max of a continuous function on a closed and bounded set in \(\mathbb{R}^m \) is achieved.

Remark: *Units* for channel capacity are **bits** per symbol.

Theorem: *(Shannon)* Channel capacity of a binary symmetric channel with bit error probability \(p \) is

\[
1 - H(p, 1 - p) = 1 + p \log_2 p + (1 - p) \log_2 (1 - p)
\]

Remark: This makes channel capacity computable!

Remark: Sensibly, when \(p = \frac{1}{2} \) channel capacity is 0, since what we get over the channel is worthless. We can *detect* errors (by parity-check bits) but cannot *correct* them. Similarly, reasonably-enough:

Proposition: Let \(C \) be a memoryless channel with capacity \(c \). Then for any positive integer \(n \) the \(n^{th} \) extension \(C^{(n)} \) of \(C \) has capacity \(nc \).
Examples: Values of channel capacity for varying bit-error probability p:

<table>
<thead>
<tr>
<th>bit-err prob</th>
<th>channel cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>0.92</td>
</tr>
<tr>
<td>.02</td>
<td>0.86</td>
</tr>
<tr>
<td>.04</td>
<td>0.76</td>
</tr>
<tr>
<td>.05</td>
<td>0.71</td>
</tr>
<tr>
<td>.06</td>
<td>0.67</td>
</tr>
<tr>
<td>.07</td>
<td>0.63</td>
</tr>
<tr>
<td>.08</td>
<td>0.60</td>
</tr>
<tr>
<td>0.1</td>
<td>0.53</td>
</tr>
<tr>
<td>0.2</td>
<td>0.28</td>
</tr>
<tr>
<td>0.3</td>
<td>0.12</td>
</tr>
<tr>
<td>0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>.45</td>
<td>0.007</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Remark: This function is not linear.

Remark: For bit-error rate 1/2 or anything close to it, the channel capacity approaches 0.000 quite rapidly. Not linearly.
Shannon’s noisy coding theorem

Shannon’s 1948 theorem proves that there exists an error-correcting encoding so that information can be sent through a noisy channel at a rate arbitrarily close to the capacity of the channel.

Word error probability of encoding f is average probability of error in decoding, weighted-averaging over source words w_1, \ldots, w_N. This is not a good model, since an assumption of equal probability is invariably stupid, and we might not know the probabilities.

A better measure to minimize is

maximum word error probability

\[
= \max_i P(\text{error}|w_i \text{ sent})
\]

If \max prob error prob is small, then avg word error prob is small, since

maximum word error probability of f

\geq average word error probability of f
We now emphasize binary codes, so everything is 0’s and 1’s.

We think of a binary symmetric channel (and, without explicit mention, its extensions to process a stream of bits), whose nature is completely described by the single parameter p, the bit-error probability.

Always use maximum-likelihood (equivalently, minimum-distance) decoding.

From Shannon, a symmetric binary channel C with bit error probability p has capacity

$$c = 1 + p \log_2 p + (1 - p) \log_2(1 - p)$$

Definition: The rate of a binary code with maximum word length n with t codewords is defined to be

$$\text{rate} = \frac{\log_2 t}{n} = \frac{\log_2(\text{number codewords})}{\text{max word length}}$$
Remark: The maximum possible rate is 1, which can occur only for a binary code with maximum word length n where all the 2^n binary codewords of length n are used in the code. This represents the fullest possible transmission of information through a channel.

Remark: In a noisy channel where the bit error probability is > 0 it is unreasonable to use a code with info rate too close to 1, because such a code will not have enough redundancy to either detect or correct errors.

Example: For binary code 001, 110, 010, 101

$$\text{info rate} = \frac{\log_2 (\text{no. codewords})}{\text{max length}} = \frac{\log_2 4}{3} = \frac{2}{3}$$

Example: For binary code 001, 110, 010

$$\text{info rate} = \frac{\log_2 (\text{no. codewords})}{\text{max length}} = \frac{\log_2 3}{3} \approx 0.585$$
Examples:
For three-fold binary repetition code 111, 000

$$\text{info rate} = \frac{\log_2 (\text{no. codewords})}{\text{max length}} = \frac{\log_2 2}{3} = \frac{1}{3}$$

For 5-fold binary repetition code 11111, 00000

$$\text{info rate} = \frac{\log_2 (\text{no. codewords})}{\text{max length}} = \frac{\log_2 2}{5} = \frac{1}{5}$$

Remarks: Repetition codes can correct errors by majority vote/logic, meaning assume that the majority of bits are correct.

But repetition codes are very inefficient, since they have a very low information rate.
Theorem: (*Noisy Coding*) For symmetric binary channel C with bit error probability $p < \frac{1}{2}$, let R be an info rate

$$0 < R < 1 + p \log_2 p + (1 - p) \log_2 (1 - p)$$

There is a sequence C_1, C_2, \ldots of codes of lengths n_i with rates R_i approaching R such that

$$\lim_{i} \text{ word length } (C_i) = \infty$$

$$\lim_{i} \max \text{ word error probability } (C_i) = 0$$

More specifically, given $\varepsilon > 0$, for sufficiently large n there is a code C of length n with rate $R_0 \leq R$ such that

$$|R_0 - R| \leq \frac{1}{n}$$

and

$$\max \text{ word error probability } (C) < \varepsilon$$
Remark: The unusual nature of the proof gives no explanation of how to find or create the codes, nor how rapidly the maximum word error probability decreases to 0.

Shannon’s amazing insight was that whatever the average value P_{avg} of P_C, averaged over all length n codes C with t codewords, there must be at least one code C_0 which has

$$P_{C_0} \leq P_{\text{avg}}$$

This is elementary: let a_1, \ldots, a_N be real numbers, with average

$$A = \frac{a_1 + \ldots + a_N}{N}$$

We claim that there is at least one a_i (though we do not know which) with $a_i \leq A$. If $a_i > A$ for all a_i, then

$$a_1 + \ldots + a_N > A + \ldots + A = N \cdot A$$

and

$$\frac{a_1 + \ldots + a_N}{N} > A$$

contradicting the fact that equality holds (since A is the average).
Remarks:
Only in the last decade or two has there been much systematic success in finding codes that approach the Shannon bound.
Length 7 Hamming codes were the first good codes found, about 1950. But these do not scale up well, giving only good small codes.
Reed-Solomon (RS) and Bose-Hocquengham-Chaudhuri (BCH) codes were and are reasonably good medium-small codes, and are still in use.

It turns out that making good error-correcting codes seems to be a much harder problem than compression issues.