
The finite field with 2 elements

The simplest finite field is

GF (2) = F2 = {0, 1} = Z/2

It has addition and multiplication + and ×
defined to be

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0
0 × 0 = 0 0 × 1 = 0 1 × 0 = 0 1 × 1 = 1

Notation Z2 is sometimes used, but this is ill-
advised since in closely-related contexts Z2 is
the 2-adic integers, an entirely different thing.

Remark: Since 1 + 1 = 0,

−1 = 1

if by ‘−1’ we mean something which when
added to 1 gives 0. Similarly,

−0 = 0

since 0 + 0 = 0.

1



Remark: It is not possible to tell without
context whether symbols 1 and 0 refer to
elements of F2 or something else.

Remark: With 0 and 1 viewed as bits, the
addition in F2 is exclusive or. This is worth
noting, but there are important and useful other
viewpoints which we will pursue. One is the
construction of Z/p, the integers modulo p.
Here is p = 2. The further abstraction is to
finite fields.

Remark: In F2

2 = 1 + 1 = 0

3 = 1 + 1 + 1 = 2 + 1 = 0 + 1 = 1

4 = 1 + 1 + 1 + 1 = 2 + 2 = 0 + 0 = 0

and so on. Yes, here

2 = 0

3 = 1

4 = 0

etc.

2



Polynomials over GF (2)

Basic algebra with polynomials having
coefficients in the finite field F2 is in almost
exactly the same as polynomials having real or
complex coefficients.

A polynomial P (x) in the indeterminate x
with coefficients which are real numbers is a
sum of powers of x with real numbers in front of
them, like

P (x) = 2.077 · x7 − 9.11 · x2 + 17

The numbers in front of the powers of x are the
coefficients. The degree of a polynomial is
the highest power of x that appears with a non-
zero coefficient. By convention, to avoid making
exceptions, assign the 0-polynomial degree −∞.

Proposition: The degree of the product of
two polynomials is the sum of their degrees.

Proof: The coefficient of the highest-degree
term of the product is the product of the
highest-degree terms of the factors. ///

3



A polynomial gives rise to a polynomial
function, denoted by the same symbol, into
which we can plug numbers in place of the
indeterminate x.

Analogously, a polynomial in the
indeterminate x with coefficients in the
finite field F2 looks like a polynomial with real
coefficients but with coefficients only 0 or 1.

Remark: The exponents of x are always
ordinary integers, regardless of what kind of
coefficients we use.

For example,

P (x) = 1 ·x4 +0 ·x3 +0 ·x2 +0 ·x+1 ·x0 = x4 +1

is such a polynomial.

Remark: Since the only coefficients are 0 and
1, if the coefficient of a power of x is 0, don’t
write it at all, and if the coefficient is 1 write
the power of x.

Such a polynomial gives a polynomial
function from F2 to F2, by evaluation:

P (0) = 04 + 1 = 1
P (1) = 14 + 1 = 0

4



Unlike with real numbers, different polynomials
can give rise to the same function. For example,
P (x) = x2 + x + 1 and Q(x) = 1 have the same
values for any input in F2.

Addition of polynomials with coefficients in
F2 is to add the coefficients of corresponding
powers of x, inside F2. For example,

(x3 + x2 + 1) + (x3 + x + 1)

= (1 + 1) · x3 + (1 + 0) · x2 + (0 + 1)x + (1 + 1)

= x2 + x

Multiplication of polynomials is as usual,
much like multiplying decimal integers, keeping
track of powers of x instead of decimal places.
Multiplication of polynomials is simpler in that
there is no carry. Integer multiplication is

8 3
× 2 3

2 4 9
1 6 6

1 9 0 9

5



Polynomial multiplication is similar. For
example, with real coefficients

2x3 +3x2 +x −3
x2 −2x +1

+2x3 +3x2 +x −3
−4x4 −6x3 −2x2 +6x

2x5 +3x4 +1x3 −3x2

2x5 −x4 −3x3 −2x2 +7x −3

Each term in the first polynomial
multiplies each term in the second
polynomial.

Analogously, multiply polynomials with
coefficients in F2: each term in the first
multiplies each term in the second, and add
them. This is easier because the arithmetic of
F2 is so easy.

6



For example, keeping in mind that 1 + 1 = 0 in
the finite field F2:

x3 +x +1
× x2 +x +1

+x3 +x +1
+x4 +x2 +x

x5 +x3 +x2

x5 +x4 +1

Preserve the vertical alignment of like powers of
x against miscopying errors.

Remark: With coefficients in F2, polynomials
which look different may be the same if we do
not reduce the coefficients to be either 0 or 1.
For example,

x − 1 = x + 1 = −x + 1

2x + 1 = 1 = −2x + 3

7



Division of one polynomial by another is
analogous to long division (with remainder)
of integers, except there is no borrowing nor
carrying.

First we do an example with coefficients viewed
as being ordinary integers or real numbers:

x3 +x2−x1−1 R x4 + 3x + 2
x5+x3+x +1 x8 +x7+0 +0 +x4+x3+0 +x +x0

x8 +0 +x6+0 +x4+x3+0 +0 +0

x7 −x6+0 +0 +0 +0 +x +x0

x7 +0 +x5+0 +x3+x2+0 +0

−x6−x5+0 −x3−x2+x +x0

−x6+0 −x4+0 −x2−x +0

−x5+x4−x3+0 +2x+x0

−x5+0 −x3+0 −x −x0

x4 +0 +0 +3x+2

x3 x5s go into x8: multiply the divisor by
x3 and subtract from dividend, yielding
x7−x6+x+1. x2 x5s go into x7: multiply
the divisor by x2 and subtract, giving new
remainder −x6−x5−x3−x2+x+1. Continue
until degree of the remainder < degree of
divisor.

8



Now view the coefficients as in F2, so −1 = 1,
1 + 1 = 0, etc:

x3 +x2+x +1 R x4 + x
x5+x3+x +1 x8 +x7+0 +0 +x4+x3+0 +x +x0

x8 +0 +x6+0 +x4+x3+0 +0 +0

x7 +x6+0 +0 +0 +0 +x +x0

x7 +0 +x5+0 +x3+x2+0 +0

+x6+x5+0 +x3+x2+x +x0

+x6+0 +x4+0 +x2+x +0

+x5+x4+x3+0 +0 +x0

+x5+0 +x3+0 +x +x0

x4 +0 +0 +x +0

Remark: Because in F2 we have −1 = +1,
addition and subtraction are the same. We can
add, which is easier, rather than subtract.

Remark: Keep in mind things like 2 = 0,
3 = 1 in F2.

Remark: It’s impossible to tell what the
coefficients of a polynomial are without context.

Remark: Regardless of the coefficients, the
exponents of x are non-negative integers.

9



Cyclic redundancy checks (CRCs)

Cyclic redundancy checks (CRCs) detect
but do not correct errors, generalizing parity
check bits, but better.

An optimal n-bit CRC will detect any 2 bit
errors in 2n − 1. Common values of n are 12,
16, and 32.

With data a stream of bits like 1100010100,
create a data polynomial with coefficients in
F2 by using the 0s and 1s as coefficients:

1100010100 → x9 + x8 + x4 + x2

A CRC-computing algorithm is specified by
its generating polynomial, a polynomial
with coefficients in F2. For example, take as
generating polynomial

x3 + x + 1

The CRC value of the data is computed by
finding the remainder when the data
polynomial is divided by the generating
polynomial.

10



With data polynomial 1100010100 = x9 +
x8 + x4 + x2 and generating polynomial
1101 = x3 + x + 1

x6 +x5+x4+0 +0 +0 +0 Rx2

x3 + x + 1 x9+x8+0 +0 +0 +x4+0 +x2+0 +0
x9 +0 +x7+x6

x8+x7+x6+0 +x4+0 +x2+0 +0
x8+0 +x6+x5

x7+0 +x5+x4+0 +x2+0 +0
x7+0 +x5+x4

x2

Thus, the remainder is x2, which we translate
back to bits as 100 (descending degree). That is

CRC with gen poly x3 + x + 1 computed for

data 1100010100 is 100

Remark: Division can be implemented
cleverly so the CRC of large data can be
computed quickly.

11



Remark: In some cases division is run in the
opposite direction bit-wise, meaning that the bit
string is interpreted as coefficients in ascending
rather than descending order. This doesn’t
change the idea but changes the interpretation.

Remark: Computation of a single parity
bit is computation of CRC with generating
polynomial x + 1.

Remark: For CRC generating polynomials of
degree n there are 2n possible values of CRC of
data, since the remainder after division can be
any polynomial of degree n − 1 or less. If the
remainders are uniformly distributed then the
CRC misses only 1 in 2n bit errors.

12



Remark: A common but deficient type
of redundant information computed to
detect errors or changes in data is an XOR
checksum. meaning exclusive-or. These are
easy in typical computer operations: XOR all
the bytes to produce a single-byte checksum
value. This is appealing because it is easy and
fast. With 28 different possible checksum values
(because of the 8-bit ASCII bytes) it would
seem that these checksums should be good at
detecting errors. However, since some 8-bit
bytes are much more common than others, these
checksum values are not uniformly distributed
among the 28 possibilities.

The XOR checksum is simply the (bad) CRC
with generating polynomial

x8 − 1

Remark: We should realize that if we are
unhappy with the statistical (error-detecting)
properties of a CRC then we can try a different
generating polynomial.

13



Better CRC’s in real life are among the
following standard ones:

x12 + x11 + x3 + x + 1

x16 + x12 + x5 + 1

and

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10

+x8 + x7 + x5 + x4 + x2 + x + 1

These catch all two-bit errors in very long
strings: that degree 12 CRC catches all two-bit
errors up to distance 212 − 1 apart, the degree
16 CRC catches all two-bit errors up to distance
216 − 1 apart, and the degree 32 CRC catches all
two-bit errors up to distance 232 − 1 apart.

Remark: This is so because these polynomials
are all primitive, discussed subsequently.

14



What errors does a CRC catch?

Algebra can explain what errors will be detected
by a CRC, and how choices of the generating
polynomial affect performance.

For CRC with generator g and for data a
polynomial d (both with coefficients in F2),
suppose that d is transmitted or played back
with some errors, and becomes d̃.

The error vector or error polynomial is the
difference

e = d − d̃ = d − d̃

The number of non-zero coefficients in e is its
Hamming weight, and is the number of bit
errors.

15



Let r be the CRC value of d, the remainder
when d is divided by g.

d = q · g + r

where q is the quotient. Let r̃ be the CRC value
of d̃, and

d̃ = q̃ · g + r̃

where q̃ is the quotient dividing d̃ by g.

Then the error is

e = d − d̃ = (q · g + r) − (q̃ · g + r̃)

= (q − q̃) · g + r − r̃

The remainder upon dividing e by g is r−r̃.

The CRC fails to detect error e = d − d̃ the
remainder r − r̃ must be 0, that is if g divides e
(with remainder 0).

Remark: Take for granted for now that
divisibility properties of polynomials with
coefficients in F2 are reasonable and consistent
with divisibility properties of polynomials with
real or complex coefficients.

16



• If there is just one bit error, at ith position,
the error polynomial is

e(x) = xi

undetected by the CRC if and only if g(x)
divides e(x) = xi. Since xi is the product
of i copies of x, g(x) cannot divide xi unless
g(x) = xj for some j ≤ i. So g(x) = x + 1
detects single bit errors.

• With two bit errors, at mth and nth

positions (with m < n), the error is

e(x) = xm + xn

undetected if and only if g(x) divides

e(x) = xm + xn = xm(1 + xn−m)

If g(x) has constant term 1, then g has no
factor of x and g(x) must divide 1 + xn−m.

17



Example: About detectability of two-bit
errors: the XOR checksum, the CRC with
g(x) = x8 − 1. Recall high-school algebra

x2 − 1 = (x − 1)(x + 1)
x3 − 1 = (x − 1)(x2 + x + 1)
x4 − 1 = (x − 1)(x3 + x2 + x + 1)
x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1)

. . .
xN − 1 = (x − 1)(xN−1 + . . . + x + 1)

Replaceng x by x8

x16 − 1 = (x8 − 1)(x8 + 1)
x24 − 1 = (x8 − 1)(x16 + x8 + 1)
x32 − 1 = (x8 − 1)(x24 + x16 + x8 + 1)
x40 − 1 = (x8 − 1)(x32+x24+x16+x8+1)

. . .
x8N − 1 = (x8 − 1)(x8(N−1) + . . . + x8 + 1)

That is, x8 − 1 divides (with remainder 0) any
polynomial x8N − 1. So two bit errors occur
a distance apart which is a multiple of 8, the
XOR checksum CRC will not detect it.

18



Example: But almost this performance can
already be achieved by a smaller/cheaper CRC:
the CRC with generating polynomial x3 + x + 1,
of degree 3 rather than 8 only fails to detect
two-bit errors a multiple of 7 apart. That is,
x3 + x + 1 divides xN − 1 (with remainder 0)
only when N is a multiple of 7 smaller N works.
(How to check?) This property is a consequence
of primitivity, discussed later.

Example: Still about 2-bit errors: using CRC
with generating polynomial x4 + x + 1, even
though only degree 4, fails to detect two-bit
errors only when they’re a multiple of 15 apart.
That is, x4+x+1 divides xN−1 (with remainder
0) only when N is a multiple of 15. (How to
check?) This shows the XOR checksum is
inefficient.

19



Example: Still thinking about 2-bit errors:
using the CRC with generating polynomial
x5 + x2 + 1, even though it’s only of degree
5, fails to detect two-bit errors only when a
multiple of 31 apart. x5 + x2 + 1 divides xN − 1
only when N is a multiple of 32. Can certainly
check by trying to divide all candidates that no
smaller N works, but this is not the intelligent
way to verify the property.

Example: Changing the generating
polynomial slightly from x5+x2+1 to x5+x+1,.
mysteriously, the performance is degraded so
that two-bit errors a multiple of 21 apart will
pass undetected.

Example: Changing to generating polynomial
x5 + x4 + x + 1 mysteriously causes a further
degradation: two-bit errors which are a multiple
of 8 apart will pass undetected.

20



Remark: While the degree of the polynomial
is higher, so that the CRC’s reported value
contains more bits, the choice of how these bits
are computed is suboptimal.

Example: By contrast, the CRC with
generator

x16 + x15 + x2 + 1 = (x + 1)(x15 + x + 1)

will fail to detect two-bit errors only if they are
a multiple of 32767 = 215 − 1 apart! (Obviously
this is not discovered by brute force!)

Remark: As in the last example, the most
effective CRC’s are obtained by taking
generating polynomials which have a factor like
x15 + x + 1 which is irreducible, meaning
that it can’t be factored further into smaller-
degree polynomials with coefficients in F2. This
is the polynomial analogue of being a prime
number. Further, not only is this polynomial
irreducible, it is primitive, meaning that the
smallest integer N such that the polynomial
divides xN − 1 is N = 2d − 1 where d is the
degree of the polynomial.

21



Remark: It is unclear whether there are many
such things, how to find them, how to verify the
property, etc.

Remark: The 16-bit CRC above detects all 3-
bit errors in data of 32767 bits or less because it
is the product of x+1 with a primitive degree 15
polynomial. The primitive degree 15 polynomial
detects two-bit errors within distance of 32767
while the x + 1 detects all errors consisting of an
odd number of bit errors.

Burst errors are errors close together. A CRC
of degree n with non-zero constant term can
detect a any burst error of length < n: the error
can be written as

e(x) = xn · p(x)

where p(x) is a polynomial of degree < n. For
the CRC to fail to detect this, it must be that
g(x) divides e(x) (with remainder 0). Since g(x)
has non-zero constant term it has no factors of
x, so for g(x) to divide xn · p(x) it must be that
g(x) actually divides p(x). But if the degree
of p(x) is less than the degree of g(x) this is
impossible. Thus, the error will be detected.

22



Remark: We have implicity used unique
factorization of polynomials with coefficients
in F2. This deserves proof later.

Remark: It is useful that polynomials f(x)
with coefficients in F2 have the funny property

f(x2) = f(x)2

To see this, let f(x) = xn + g(x) with g(x) the
lower-degree terms in f(x). Then

f(x)2 = (xn)2 + 2xng(x) + g(x)2

= (xn)2 + 0 + g(x)2

since 2 = 0 in F2. By induction on the number
of terms, assume g(x)2 = g(x2), so

f(x)2 = (xn)2 + g(x2) = (x2)n + g(x2) = f(x2)

as asserted. ///

23


