PK issues, ideas

e RSA cipher

e Diflie-Hellman key exchange

e Authentication issues

e Examples of protocols
* Threshold schemes
* Oblivious transfer

* Zero-knowledge proofs

e e-money and identity issues

Authentication issues

Possibly authentication is even more
important than secrecy.

Consider reliability of communication in a
hostile (not merely noisy) environment.

Obstacles to communication can be more
serious than loss of confidentiality:.

Both public-key and private-key techniques
are used to address (with varying success)
these issues.

Message authentication would
confirm /assure

Identity of sender

Origin of messages

Content of messages
Sequence of messages
Timing of messages

Receipt of messages
Non-repudiation of messages

* X X X X X X

2

Identity of sender: One would not want
attackers to be able to send messages to
your correspondents impersonating you.
And you would not want third parties

to be able to pose as one of your trusted
correspondents.

Origin: The issue of physical location

or host is distinct from identity, but is
entangled with it, since often the actions
of your computer are by default attributed
to you. As an important example of the
hazard of spoofing: in many email systems
it is easy to send mail in the local network
with whatever return address one wishes,
thus appearing to originate with the
corresponding person. A number of email
viruses do this.

Content: Even if the content of a message
need not be secret, you would not want an
adversary to be able to alter the content.

Sequence: You would not want an
adversary to delete some of a sequence of
messages, or reorder a sequence of messages.

Timing: An adversary should not be able
to replay one or more old messages as if
they were new (replay attack), or be able
to delay messages to make them appear
that they were sent later than they actually
were.

Receipt: You would not want an
adversary to be able to falsely report that
a message was lost, or to report falsely that
it was received.

Non-repudiation: You would not want

a sender to be able to deny that they sent a
message to you. One may not entirely trust
one’s correspondents.

In all cases there are two possibilities:
prevention of an attack, and detection of
the attack (with corresponding adaptation).

Prevention would be ideal, but for these
issues at the present time (lacking easily
available quantum channels) it seems that
detection is a practical goal.

Given the whimsicalness of networks,
messages can get out of order, be delayed,
or be lost not due to hostile acts, but
random events. Thus, verifying sequence,
timing, and receipt is more complicated
than verifying origin and content.

There are three somewhat different types of
mechanisms used in authentication:

e message encryption

¢ message authentication codes (MACs)
¢ hash functions

Message encryption:

Keep in mind that the goal may not be just
secrecy, but message integrity.

In this approach, one encrypts the message
using a cipher that the authorized recipient
can decrypt, and sends the ciphertext.

The authorized recipient decrypts the
ciphertext.

The ciphertext is the authenticator

of itself, because we presume that no
unauthorized party could create a message
that would decrypt properly with that
cipher/key.

Messages can be stolen, replayed, etc.

Message authentication codes: These
are many-to-one functions producing ‘small’
pieces of authentication material by using

a public function of the message and of

a secret key shared by the authorized
recipient.

The small piece of data, often called the
MAC, is sent along with the plaintext.

The authenticator object is the value of
the MAC. The recipient of the message
recomputes the MAC of the received
message and checks that it matches the
MAC value sent along with it.

This does not prevent reordering, delaying,
replay, or theft of packets.

Hash functions These are message
authentication codes without keys.

Just as MACs, hash functions produce a
‘small’ piece of authenticating data by using
a public function of the message.

There are situations in which it would not
be possible (or would be inconvenient) to
have arranged a shared secret key.

Using encrypted message as
authenticator is tricky with unstructured
messages: decryption gives a plaintext
whose legitimacy is hard to confirm.

A modification: the sender can append

a checksum (also called frame check
sequence, or FCS) of the whole message
to itself before encryption.

The authorized decryptor decrypts the
whole, removes the checksum from the
tail of the plaintext, and computes the
checksum value of the remaining plaintext
to see whether it matches the checksum.

We imagine it would be difficult for an
interloper to generate a fake ciphertext
which would decrypt to plaintext-plus-
checksum. But replay attacks are not
prevented.

In any case it is essential that the checksum
be added before encryption.

Encryption does not prevent replay of

old messages which had been overheard
and copied by an eavesdropper. To avoid
having old messages be replayed, the time
of generation of a message should be
included as a part of the message itself, as
a timestamp.

The timestamp should be added to the
message before any other authentication
code of the message s computed, and before
encryption.

Not encrypting but computing a keyed
MAC and appending the MAC is
computationally cheaper than encrypting,
and allows the recipient a choice of
whether or not to verify, based on
circumstances. The secret-key material
used in computing the MAC prevents
unauthorized interceptors from altering
the message and creating a matching MAC
value.

10

While it sounds good, verification of
receipt of messages creates difficulties,
some possibly unexpected, such as
information leakage.

If an email receipt protocol were
implemented, by sending (uninvited) email
one could obtain information about other
people without their permission.

The ‘finger’ protocol already allows
something of this sort, with the pursuant
privacy problems, even if one is not allowed
to check last login times. For this reason
‘finger’ is often disabled.

Some aspects of chat rooms and instand
messaging cause similar information leakage.

Calling someone to see whether they’re
home or in their office, without identifying
oneself or deceitfully identifying oneself, is a
similar information-theft technique.

11

Finally, non-repudiation is hard to
assure. Someone can send you an encrypted
message, but later claim that their key had
been compromased prior to that time, so
they are not responsible for the content of
the message.

There seems to be no simple solution to
this. It can really happen that a key is

compromised, and revocation must be
possible.

This is related to issues about whether

one is responsible for the actions of one’s
computer, whether a claim that the
computer had been ‘hijacked’ is a legitimate
defense, and how one proves that one did
not have control of the computer.

This becomes awkward especially if one has
specialized technical knowledge.

12

Examples of protocols

A protocol is a formal procedure, to be
followed by people or machines, embodying
public-key and other computations, to
achieve certain pre-specified effects.

The simplest and best-known protocols are
implementations of ciphers, with the goal of
achieving secrecy. Using the RSA cipher in
a specified manner, or using Diffie-Hellman
key exchange to exchange an AES key are
such.

There are other possibilities, some of which
will be important in the future, such as
Threshold schemes
Oblivious transfer

* Zero-knowledge proofs

We will not give formal specifications, but
only informal sketches.

13

Threshold schemes

A threshold scheme is a mechanism by
which which a secret can be uncovered if
sufficiently many, but not necessarily all,
members of a group agree.

More precisely: given a secret = to be k-
shared among ¢ people A1, Ao, ..., Ay, give
A; a blob of information a; so that

e A; knows a; (but not a; for j # i).

e No part of the secret x can be recovered
from any £ — 1 of the blobs a;.

e The secret x can easily be computed from
any k of the a;’s.

That is, the t entities involved share the
secret in that at least k of them must
cooperate to recover the secret. Given ¢
and a secret x, a list of a1,...,a, which

accomplish these objectives is a (k, t)-
threshold scheme.

14

A simple threshold scheme uses Sun Ze’s
theorem.

Let mq,...,m; be pairwise relatively prime
integers > 1. Let Let M = ay...a,
M; = M/m;, and n; =]\47;_1 mod m,;.

(Since m; is relatively prime to m; for

7 # 1, m; is also relatively prime to M;,
by unique factorization, since M; is the
product of integers prime to m;. Thus,
the multiplicative inverse INV; exists and is
computable via Euclid’s algorithm.)

By Sun Ze, for integers a1, ..., a; the
system of simultaneous congruences

r = a; mod m; for all ¢

is equivalent to

¢
r = Z a; M; n; mod M
i=1

15

Fix k with 1 < k£ < t. Let H; be the
smallest product of k different m;s, and
hi_1 the largest product of £ — 1 different

m;s. We assume that Hy is much larger
than hk_ll

Hp > (N+1)-hg_q
for positive V.

Theorem: For secret x represented as a
number in the range

h, < x < Hg

let a; = ¢ % m;. Then the set {ay,...,a;:} is
a (k,t) threshold scheme for x.

Remark: As can be seen in the proof, this
is more secure if the m; are large and close
together.

Proof: Suppose a1, ..., a; are known. Let
M'" = my...mg, and M] = M'/m; for

16

1 i < k. Let n; Mi’_1 mod m; for
1 < k.

<
<i Let

T = E a; M n; mod M’
i=1

Then (Sun Ze)
' = mod M’

Since M’ > H; > x, secret x is already
reduced modulo M’, so x can be computed
by

r=21 %M

17

On the other hand, suppose only
ai,...,ar_1 are known. Let
M'"=a;...ax—1 and M! = M'/m, for
1<i:<k-—1. Letn, =]\47;’_1 mod m,; for
1 <1 <k-—1. Let

k—1

T = Z a; M n; mod M’
i=1

Since M’ = mi...Mk—1,

' =xmod mimso...Mg_1

And mimeo ... Mr_—1 S hk—l- Since
hr_1 < ¢ < Hy and since (by hypothesis)

(Hk — hk—l)/hk—l > N

there are at least IV possibilities for
y mod M, so that

' = y mod M’

Thus, knowing only £k — 1 of the a;’s
is insufficient to discover the secret .

///

18

To set up a situation in which to use a
threshold scheme, we might suppose that
there is a trusted central agency which
has the secret x, which knows the moduli
m;, which computes the threshold scheme
data aq1,...,a,, and which communicates a;
to the entity A; by secure means.

What remains is to set up a protocol

for £ among the ¢ entities to share their
information without anyone cheating, or

at least without cheating going undetected.

Cheating is a non-trivial problem in

design of protocols. Prevention is often
impossible. Detection is easier, but mere
detection of damage may be insuflicient.
One must have adequate plans for recovery
from damage.

19

Oblivious transfer

A stmple version: Alice has a secret which
she wishes to communicate to Bob so that,
afterward, Alice herself does not know
whether Bob actually received the secret,
but Bob knows.

A better version: Alice has several secrets,
and wishes to transfer one of them to Bob
in such manner that only Bob knows which
secret was actually communicated.

This could be relevant if Bob does not want
to embarrass himself by directly confessing
that he 1s ignorant of one or more of the
secrets.

20

For the simpler case, assume the single
secret is the factorization n = pqg with
two large primes p,q with p = 3 mod 4 and
g = 3 mod 4.

(This is actually very general, because

any other secret could be encrypted via
RSA using modulus n, so that knowing the
factorization allows decryption, revealing
the secret.)

Use the fact that knowing ,y mod n so
that 2 = y? mod n but x # =Ly allows
factorization of n, since ged(x — y,n) will be
a proper factor of n, exactly as in factoring
n by using a square-root oracle.

21

Bob chooses random 0 < z < n, sends

7 = 22 mod n to Alice.

Alice computes principal square roots w; of
z mod p and wy of z mod ¢q via

wyp = Z(p+1)/4 modp
Wo = Z(Q+1)/4 mod q

Choosing random =+’s, Alice lets y; = w1,
Yo = twsy, and uses Sun Ze (and Euclid) to
make a square root y of z modulo n = pq
with y = y; mod p and y = y mod ¢q. Alice
sends y to Bob.

If Bob’s £ was £ = +y mod n Bob cannot
factor n, but if

x=1yismodp and x = —ys mod q
or
r=—y;modp and z =y, modq

Bob can compute ged(n,z — y) to find one
of p,q.

22

Recall that y* = z mod pg with distinct
primes p, ¢ has at most 4 solutions. Thus, in
Bob’s situation, the two solutions &= mod n
are 2 of the 4 total, and Alice has equal
probability of delivering any one of the

4. Thus, after Alice’s information, Bob

has 50% chance of being able to factor n,
and 50% chance that he will not be able to
factor n.

That s, after a single transaction Alice only
knows probabilities for Bob knowing or
not knowing, but Bob either does or does not
know. Only Bob knows whether he knows or
not. Alice does not know whether Bob knows
or not.

23

Now suppose Alice has two secrets and
wants to transfer them to Bob so that Bob
gets just one of them, but so that Alice
does not know which of the two he got.
We assume intractability of computation
of discrete logs modulo large prime p.

Given b mod p (not necessarily a primitive
root), the discrete log or index indy(x)
of x modulo p base b is the non-negative
integer £ (if it exists) such that

b* = 2 mod p

If b is a primitive root mod p then (as we’ve
seen) the discrete log does exist.

Note that from p, primitive root b mod

p, and values b* mod p and Y mod p, the
value ™Y mod p cannot be easily computed.
It seems to require knowing the discrete logs
x and y.

24

The secrets are integers s1, s9, padded if
necessary to have the same length.

Large prime p is chosen randomly and
publicly, primitive root b for Z mod p is
chosen randomly, and random 1 <c < p— 1.

Bob (as in ElGamal-style PK) picks random
bit 2 and random 1 < =z < p — 1 and
computes

S
-
|

g®” mod p
bi_; = c-g modp

Whichever of 0,1 bit ¢ is, bit 1 — ¢ is the
opposite. Bob uses (bg, b1) as his public
encryption key and keeps (i, x) secret.

Alice checks bgpb; = ¢ mod p.

Alice randomly picks g, y1 in interval
2, p — 2] and computes

ag = g7° tg = bgo mo = Sg D 1o

a1 = gyl tg = b?lh my1 = 81 D tq

25

She sends ag, a1, mg, m; to Bob.

With the secret random bit 2 Bob acquires
secret s; by computing (mod p)

ai = (g¥)* = (¢%)¥ = b" =t
and then
s;i = m; D1

Remark: Bob cannot compute the log of ¢
base b mod p, so cannot compute the logs of
both by and b;. The random bit 7 prevents
public knowledge of which of by, b1 Bob
knows the discrete logarithm. Bob cannot
acquire both sy and s, since he cannot
(easily) compute the discrete log of c.

26

Zero-knowledge proofs

Peter (the prover) can convince Vera
(the wverifier) he knows the factorization
of a large integer n, the product of two
large primes p, g, without telling Vera the
factorization.

Suppose n = pq with large primes p, g both
3 mod 4.

Vera chooses random z and sends z* % n to
Peter.

Peter computes the principal square root
y1 = (24)P*tD/2 of 24 mod p and principal
square root ¥ = (24)@+1)/2 of 24 mod g,
and uses Sun Ze (and Euclid) to compute
y so that y = y; mod p and y = y» mod q.
Peter sends this to Vera.

Since Vera already can compute z?, Peter
has given no new information to Vera.

27

Vera should be convinced that there is no
other way for Peter to have found this
square root than by knowing the factors

D, q, because in any case being able to take
square roots modulo n gives a probabilistic
algorithm for factoring n (when n is of the
special form n = pq with distinct primes
D,q), as we have seen.

By the same trick, Vera can cheat, and learn
p and ¢q, by giving Peter not z* mod n but
2 mod n... But perhaps Vera does not

want to know p and q.

If Vera is supervised by a trusted third party
then that third party could affirm that she
did not cheat.

28

e-money, identity

Non-repudiation matters when signing
contracts or authorizing actions
electronically.

There is the issue of identity: Who are
you? (in terms of the internet) and how do
you prove it?

And can you maintain different identities
for different purposes? Will that become
impossible? Illegal? (In the face of anti-
terrorism actions?)

Data privacy concerns medical records,
credit records, records of actions taken on
the internet (often cookies).

How can one execute a transaction on the

internet without exposing more information
than desired?

29

From the viewpoint of merchants, some
information must be divulged in order to
establish sufficient trust to justify shipping a
product.

Ideally, the buyer should be able to give just
enough information, no more, to the seller,
in order to convince the seller to complete
the transaction.

Symmetrically, the seller also may need to
establish trust.

30

A basic technical issue in electronic
transactions is failure mode: what happens
if an electronic transaction is interrupted
before completion? Is your money
withdrawn from your bank, or not? Perhaps
it is withdrawn from your account, but
doesn’t make it to you?

Protocols and software and hardware
ensuring atomicity of transactions are
important to minimize these problems.

Much as database designers rollback
an incomplete transaction rather than
abandoning a transaction part way through.

31

A true electronic abstraction of ‘money’ is
still in the future.

A drawback to use of conventional credit
cards, as opposed to paper money, is that
the credit card’s value exists only insofar as
it is connected to your identity.

But then your transactions are traceable.

By contrast, paper money has value in
itself, and no connection to your identity,
so cannot yield information about other
transactions.

Current electronic banking has the same
problem as credit cards: someone knows a
lot about your financial transactions, where
and when they are made, and your general
spending patterns. This information can be
marketed!

32

Ideally, e-money would

e have a value independent of identity

e be divisible

e be transferable

e not be reusable (can’t spend the same
dollar twice)

e would not depend on a central authority
e allow transactions offiine.

We are not close to achieving these goals.

33

